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ABS TRACT

The perturbation method proposed by Professor Hui is

described. The method gives exact solutions for the perturbed

flow over both sides of a flat plate which is oscillating

with small amplitude and frequency at large angles of attack

in steady supersonic/hypersonic inviscid flow provided that

the shock remains attached. Using the strip theory concepts

these solutions are extended to study the dynamic stability

in pitch of a flat, periodically oscillating wing or arbi-

trary planform shape, at large angles of attack. Finally,

Hui's perturbation method is extended to include the effects

of upstream disturbances on a stationary wedge.
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I. INTRODUCTION

This thesis deals with oscillating bodies in inviscid,

steady or unsteady, supersonic/hypersonic flow. Its sub-

ject matter may be divided into three main topics.

The first topic is covered in Sections II and III.A.l,2

and constitutes the background material for the other two.

In Section II the Eulerian governing equations and boundary

conditions for unsteady flow are formulated and the two-

dimensional shock and expansion steady flow results are given.

The basic elements of the linearized potential flow theory

are also included in this section. In Sections III.A.l,2 a

perturbation method proposed by Professor Hui is presented

[Ref. 6,7,8].1 The method uses as a basis the assumption

that the unsteady flow over an oscillating flat plate, with

attached shock waves at an arbitrary angle of attack, is a

small perturbation from the steady reference flow and, for

small amplitudes of periodic oscillations, it gives closed

form solutions for the flowfield quantities in the disturbed

flow regions.

The second topic is covered in Sections III.A.3,B,C

(Ref. 5]. In Section III.A.3 the closed form solutions over

the upper and lower sides of the oscillating plate are combined

1professor of Applied Mathematics, University of Waterloo,
Ontario, Canada. NPS, Department of Aeronautics, Visiting
Professor in the period January-August 1980.
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and the strip theory approximation is employed to calculate

the necessary quantities in the disturbed flow regions over

a flat wing of arbitrary planform shape. The in-pitch stability

derivatives for the three-dimensional wing are then obtained

in closed form and the results are compared with other exist-

ing theories. In Section III.C a comparison of these results

with linearized potential flow theory results is included

while, in Section III.B, the fundamentals of the linearized

theory, as applied to three-dimensional wings, are presented.

Finally, the third topic is covered in Section IV. Based

on the same perturbation method this topic introduces upstream

unsteadiness in the flow and its effects on stationary bodies

are obtained. The upstream unsteadiness is of a fairly general

periodic form to give the solution in the flowfield generated

by a formation of bodies provided that the body originating

shocks are not crossing and the expansion fan regions are

not overlapping. An extension to the case of oscillating

bodies is readily possible.

12



II. UNSTEADY INVISCID FLOW THEORY

To describe the fluid motion two methods are available:

the Lagrangian method and the Eulerian method. In both

methods the fluid is regarded as a continuum, i.e., its

matter is assumed to be continuously distributed.

In the first method the fluid is assumed to be divided

into infinitesimally small regions called fluid elements or

fluid particles. The so-called particle point of view is

then adopted and description of the fate of each individual

fluid particle is sought. To determine the unknowns asso-

ciated with each fluid particle, e.g., its position coor-

dinates, density etc., a system of equations is set up by

applying to each fluid particle natural laws such as Newton's

second law of motion and conservation of mass and energy.

These equations are known as the Lagrangian equations of

fluid motion.

Although the Lagrangian description appears to be a

natural way to approach the problem of fluid motion, the

Eulerian description is preferred in general since it gives

more insight into the problem, it is much simpler and in

most cases one is not interested in the fate of each individual

fluid element but rather in the properties of the fluid at a

certain point of the flow field at a certain time.

In the Eulerian method attention is focused on the vari-

ous points of the space filled by the flowing fluid and a
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description of what is happening at each of these points,

in terms of quantities of interest such as pressure, density

and velocity is sought. The flow quantities of interest

are assumed to be functions of space and time, i.e., to be

scalar or vector fields. Thus in the so-called field point

of view adopted here the fluid flow is characterized by the

fields of velocity, pressure, density and so on and a fluid

element occupying a certain point at a certain time assumes

for its properties the values that are appropriate to that

point at that time. To solve for these fields a system of

equations is again set up by using, as before, natural laws

such as Newton's second law of motion and conservation of

mass and energy. These equations are known as the Eulerian

equations of fluid motion.

Throughout this thesis the Eulerian approach is used.

In the next subsection the major steps in deriving the

Eulerian equations of fluid motion are indicated and the

equations are presented in the form in which they. will be

used later on.

A. UNSTEADY EULER EQUATIONS

The Eulerian equations of fluid motion, called hereafter

simply equations of motion, may be set up either in differen-

tial form or in integral form. Furthermore they may be

developed either from the point of view of a certain fluid

region that contains the same fluid elements for all times

(control mass approach) or from the point of view of a fixed

14



volume in space through which different fluid elements flow

through (control volume approach).

In what follows, the equations of motion are set up in

the differential form from the point of view of an infinitesi-

mal fluid region.

In this derivation we will then naturally be involved with

the calculation of the time rate of change of flow quantities

as we follow the fluid element around, the so-called material

derivatives of quantities.

A physical interpretation of the material derivative and

._ts components is briefly included.

1. Material Derivative

Consider a fixed coordinate system and a fluid ele-

ment situated at point F at some time t.1 Let Q(r,t) denote

some fluid property Q of interest (density, velocity, etc.)

associated with the point r at time t. The fluid element

situated there (see Fig. 1.1) will assume for its corresponding

property Q the value Q(?,t). In a short time interval At

the element moves through a distance Ai - VAt where V is

its velocity at F and t. The element will then assume for

Q the value appropriate to its new position r +VAt at time

t +At. If we denote this value as Q(F+VAt, t +At), the

change of Q in the time interval At is

&Q - Q(7+VAt,t+At) - Q( ,t)

IBarred quantities denote vector quantities.

15
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and the rate of change of Q following the element around,

usually denoted by D( isYDt

DQ liur Q(F+Vat,t+At) - Q(,t)
Dt At at

Expanding Q(F+iAt,t+At) in a Taylor series we get

a 2 2Q(F+VAt't+At) Q(-rt) + (2 At + (=- At +
rt at r,t

+ (2Q VAt + (VAt) 2 ++()r, t as" r, t

where s denotes distance in the direction of the velocity

at point F and time t.

Using the Taylor series expansion the rate of change of
DQ

Q, M- becomes

DQ 3 + aQ (1.1)D--t = g't t -s V(Ii

where the derivatives are evaluated at r and t.

The total rate of change of any property Q is thus com-

posed of two parts.

To see the physical interpretation of each of these terms

consider a flow field which is at any instant spacewise uni-

form but varies from instant to instant and a second flow

field which is steady but not uniform spacewise. Consider

also a fluid element in these fields which in a small time

interval 6t is moving from position F in the flow field to

position 7+46t.

16



at t

Fig. 1.1. Illustration of local, convective and
material derivatives.

The change of a property Q of the fluid element moving

in the first field described above is Qt and the rate at
at

which the property Q is changing locally at the point r is
30- . This local rate of change is known as the local deriva-

tive and is the first component of the total rate of change

in equation (1.1).

The change of a property Q of the fluid element moving

in the second flow field described above is (2)V6t. This

change which is called convective change is necessary since

the element has to have an appropriate value for its property

Q at its new position i+6t, The rate of change of the

property is () and is known as the convective derivative.

It is the second component of the total rate of change in

equation (1.1).
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The sum of the local derivative and the convective

derivative as given by equation (1.1) is known as the total

or substantial or material derivative. The last term is

probably more descriptive since the derivative is constructed

following a certain material element around. This term will

be used hereafter.

Recalling that y- represents the derivative of Q with

respect to distance in the direction of the velocity V we can

write equation (1.1) in the following form

DQ = -Q + (Wv*gradQ)V
Dt at

where 9v is the unit vector in the direction of V or simply

DQ aQ

D- =  t + V "gradQ (1.2)

where Q can be a scalar or a vector quantity.

If Q is vector quantity, i.e., Q = A the convective

derivative V-gradK can be expanded using the formula

1I
i.gradA = [grad(V.A) -VxcurlA-Axcurl V

- curl(VxX) +V(divK) -A"(divV)] (1.3)

2. Equations of Motion

We will now set up the basic equations that govern

the unsteady motion of an inviscid, compressible fluid. We

initially regard as unknowns the velocity field V(F,t), the

pressure field p(E,t) and the density field p(F,t). We

18



want to establish relationships between these fields by

applying to a certain fluid element the basic laws of nature;

Newton's second law of motion, law of conservation of mass,

law of conservation of energy.

a. Momentum Equation

Let us consider an infinitesimally small fluid

element situated at position r~ at time t (Fig. 1.2). If

Vand P are the velocity and density of the element at F and

t and if Sv denotes the volume of the element, then the mass

and the momentum of the element are p6v and p6vV respectively.

Let us also denote by T the total force acting on the element

at time t.

Newton's second law of motion which is applicable

to any mechanical system states that "at any instant, the

rate of change of momentum of a system is equal to the resultant

of all forces that are acting on the system at that instant".

By applying the above law to the fluid element considered

and by noting that the rate of change of momentum of the ele-

ment is simply the material derivative of the momentum we

get

D-~(P6vV) =F

Since the mass of the element p6v remains constant the

above equation becomes

P6v D (.31

19



-pFidS

dS=5dS

0/r at t

Figure 1.2. Fluid Zlement

The total force ' s the resultant of the so-

called surface forces and body forces.

The body fc-rces are forces that act throughout the

body of the fluid such as the gravity force. These forces

will be assumed to be small and will be neglected in this

thesis.

The surface forces on the other hand are internal

forces in the nature of actions and reactions across the sur-

fact that separates the fluid element from its neighboring

fluid elements. For a frictionless or inviscid fluid the

surface forces are simply pressure forces that act normal to

the surface of the fluid element. Their resultant is

- p dS
SS

20
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where p is the pressure of the element, SS its total surface

and i the outward unit normal to the surface.

According to the integral definition of the gradi-

ent of a scalar function the resultant of the pressure forces

which is the total force F can be written

= -(4pdS = -dv gradp

Equation (1.3.1) then becomes

DV - -gradp (1.4)Dt

This equation of motion is one of the fundamental equations

of fluid dynamics and is called Euler's Equation. It repre-

sents a system of three scalar equations for the five un-

knowns--the pressure, the density and the three scalar com-

ponents of velocity.

b. Mass Equation

Consider a fluid element situated at point F at

time t with volume 6v (Fig. 1.3). The mass of the element

is p6v. The law of conservation of mass states that "the

mass of any fluid element remains constant as it moves about"

even though, in general, its shape, volume and density may

change.

Applying the law of conservation of mass to the

element considered is thus equivalent to setting the rate

of change of mass equal to zero or setting the material

derivative of mass equal to zero. This gives

21



~(P 6V) =0

o r

5V Dt- + - 0 (1.5)

The material derivative of the volume of the element may be

expressed in terms of the velocity field. Let the surface

of the element at time t be 6S and let it in a time inter-

Val 65t grow and become 6S1as shown in (Fig. 1.3). The

change in volume of the element is equal. to the volume swept

by the surface of the element during the time 6t. if n is

the outward normal to the original surface the net volume swept

outward by 6S in time St is given by

Figure 1.3. Change in volume of a fluid element

22



Vdtnds

where V is the velocity.

The material derivative of the volume of the

element is then if we also employ the definition of the

divergence of a vector

D 6v = V-dS =6v div V

Equation (1.5) then becomes

Dp +pdiv V 0 (1.6)

This equation is known as the equation of conservation of

mass, or simply, the equation of mass, or the equation of

continuity. It is a relation between the velocity and den-

sity fields only. Since it does not involve any dynamical

quantities (such as pressures or forces) it is a kinematical

relation.

c. Energy Equation

The law of conservation of energy expresses the

balance of energy exchanges that take place between a system

and its surroundings. A fluid in motion may be regarded

as a thermodynamic system characterized by the usual thermo-

dynamic variables such as entropy, internal energy, etc.

We will assume that the fluid is non-heat conducting and

also that for a fluid element the only possible energy ex-

change process is work done by the surface forces and body

23



forces. The law of conservation of energy applied to a

fluid element may be expressed as follows.

The rate of increase of energy E of a fluid

element = the rate of work W1 done by the surface forces and

the rate of work W2 done by the body forces. Symbolically

DE W + W (1.7)
Dt 1 2

We will assume, as before, that the body forces can be

neglected and that the fluid is inviscid. The only possible

energy exchange is then work done by the pressure forces.

The rate of this work is

W = pidSV - pV -EdS

where SS as before, is the surface of the element, R is the

outward unit normal and p, V are the pressure and velocity

of the fluid element.

According to the definition of the divergence of

a vector we can write

W - qpVFdS = -6v div(pV)

On the other hand the energy E of the fluid element

is the sum of its kinetic energy and internal energy. We

specify the internal energy of the fluid by the scalar field

e(r,t) which denotes the internal energy per unit mass at

point F and time t. Then since the kinetic energy per unit

24



V2
mass is - the total energy of the fluid element with mass

P6V is

v 2

E = p6v(e + -)

Equation (1.7) can then be expressed as

p-(e +--) div(pV) (1.8)

Equation (1.8) is referred to as the equation of conserva-

tion of energy or simply the energy equation. An alternative

form of this equation is

DeD- - p div V (1.9)

which can be found by subtracting from (1.8) the so-called

equation of mechanical energy

D 
2

p ~-~(-) = - V'gradpD 5t 2

The equation of mechanical energy is formed by multiplying

both sides of Euler's equation (1.4) by V.

The energy equation (1.8) has introduced the

internal energy of the fluid as an additional unknown in the

formulation of the governing equations. The list of unknowns

includes the three scalar components of velocity, and also

the pressure, density and internal energy of the fluid, while

there are five equations available.

25



At this point we assume we are dealing with a

perfect gas and introduce the equation of state for a per-

fect gas

p = p R T (1.10)

as a sixth relation between the unknowns.

We specify the temperature T of the fluid as a

scalar field T(ir,t) and since we are dealing with a perfect

gas express the internal energy e of the fluid by the relation

e = Cv T (1.11)

where Cv is the specific heat at constant volume of the gas.

From equations (1.9), (1.10) and (1.11) we can

find that the energy equation for a perfect gas may be

written in the following form which will be used hereafter

D (_ ) - 0 (1.12)
Dt pY

Summarizing we state that the basic equations that govern

the unsteady motion of a non-heat conducting, inviscid, per-

fect gas with constant specific heats are equations (1.4),

(1.6) and (1.12). These equations are rewritten below for

easy future reference.

(continuit -P + V-(p) = 0 (la)

(momentum) 2 + V-grad-+ . p = 0 (Ib)at P
(energy) L(Z) + 'V(-2 ) 0 (ic)

at P P
26



3. Boundary Conditions

Physical conditions that should be satisfied on

given boundaries of the fluid are known as boundary condi-

tions. There are several types of boundaries and consequently

there are various possibilities for the boundary conditions.

We will consider two types of boundaries which are

of main importance in this thesis, (1) "the solid-fluid

boundary" where the fluid is bounded by a solid surface and

(2) "the fluid-shock-fluid boundary" where two regions of the

same fluid in different states of motion are separated by a

flow discontinuity. The possibility of an infinitely weak

discontinuity will not be excluded.

The nature and number of the boundary conditions depend

also on the form of the differential equations that govern

the motion of the fluid. In this sense there are differences

between the boundary conditions for a viscous fluid or an

inviscid fluid. In the following the conditions for an invis-

cid fluid are considered.

a. Conditions at a Solid-fluid Boundary

We assume that the fluid is bounded by an imper-

meable solid wall and require that no fluid should cross the

solid surface. Since the surface itself may be in motion we

denote by V the velocity of the fluid and by Vs the velocity

of the surface. The relative velocity between the fluid and

the surface is s- Let the equation of the surface be

given by S(F,t) =0. A unit normal to the surface is then

given by
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- rradSt I zgradS I

and the component of the relative velocity normal to the

surface is given by

= ±Vgr-r= 1 [V-gradS -V .gradS](-s) " t=+-Igr a dF l  s

Now assume that an observer moves with the surface particles

that compose the solid surface. The observer cannot observe

any change in the function S(F,t) considered as a scalar

field. This means that the total rate of change of S(i,t),

following a particle of the surface around, is zero, i.e.,

as -

at + VgradS = 0

The component of the relative velocity normal to the sur-

face then becomes

-1 aS
(V-V)n. = (2- + V.gradS) (1.13)

s ±~gradF1 at

The condition of impermeability of the solid surface is

(V-V) • = 0

or

DS = + V gradS = 0 At S(F,t) = 0 (1.14)
Dt at

If the solid-fluid boundary is formed by the surface of a

stationary rigid solid the above equation reduces to
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V-gradS = 0 At S(F) = 0 (1.15)

It is pointed out here that the condition for-

mulated above states that at each point of the solid-fluid

boundary the normal to the surface component of the relative

velocity between the fluid and the solid must vanish. Thus

for an inviscid fluid nothing can be said about the tangen-

tial to the surface component of the relative velocity which

may or may not be zero. In short the so-called no-slip con-

dition does not apply to an inviscid fluid.

b. Conditions at the Fluid-Shock-Fluid Boundary

Consider one dimensional adiabatic constant-area

flow of a perfect gas through a discontinuity (Figure 1.4a).

Assume that the flow quantities in regions 1 and 2 are con-

stant throughout the regions. The equations of continuity,

momentum and energy between cross sections 1 and 2 give

[Ref. 1: pp. 55,56]

P Iu = p02u2

Pl + Pl~ = + P u

2 2
U P1u1 l u 2 + Y P2

2 - P
12 p _ Y 1 P

These equations hold as long as sections 1 and 2 are

chosen outside the discontinuity region. The discontinuity

region may be assumed to be vanishingly thin and sections 1

and 2 may be brought arbitrarily close together. In this
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,Vnormal shock

Region I Region 2

6

Figure 1.4a. Change of conditions across a normal
shock in a constant area duct.
Steady flow.

S(F, t)

Vt

Region I Region 2

2Vn 2

Figure 1.4b. Change of conditions across an arbitrary
ciscontinuity surface S(r,t). Unsteady flow
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case the requirement of a constant area duct is dropped and

the equations apply locally across the discontinuity. Con-

sidering the discontinuity as a boundary separating regions

1 and 2 we may refer to equations above as boundary conditions

at the discontinuity and write symbolically

[Pul = 0 (1.16)
At x = x

[Pu2 + pi = (1.17)

2[- +  0- -- o]= 0 (1.18)

where the square brackets denote the change in the enclosed

quantity across the discontinuity.

A generalization of the simple one-dimensional

flow problem considered leads to the well known Rankine-

Hugoniot conditions in the form that will be used in this

thesis. Consider two regions in space separated by a surface

S(F,t). Assume that adiabatic flow of an inviscid, perfect

gas is established from region 1 to region 2 (Figure 1.4b).

Assume also that the surface S(-r,t) represents a discontinuity.

In general the equation of the discontinuity is not known

a priori but will be found as part of the solution of the

flow problem. Thus the boundary is a so-called free boundary.

Let the flow quantities in region 1 be (F,t),

pl(r,t), P1 (F,t) and in region 2 V2 (Ejt), P 2 (',t), P2 (Ft).
The boundary conditions (1.16), (1.17) and (1.18) should apply

locally at any point of the boundary S(F,t) provided that the
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velocities uI, u2 are replaced by the normal components of

velocities vnl, V n2. For a boundary moving with velocity

V. the normal to the boundary components of the relative.

velocities between the fluid and the free boundary are given

by formula (1.13)

V as (S + V gradS)

1 -Tgrad~s t 1

V - r1 as + V2 "gradS)

From equations (1.16), (1.17) and (1.18) using the same

notation we get:

At S = 0

(continuity) (p(- + V.VS)] = 0 (1.19)at

as - 2 2]
(normal Wit + V-Vs) + p(VS) = 0 (1.20)
momentum)

(energy) [I( '+V.VS) 2 +7_-..(VS) 2  0 (1.21)2 at 7-T P

where the square brackets denote, as before, the change in

the enclosed quantity across the discontinuity and the symbol

"V" stands for "gradient".

The conservation of tangential momentum is not

expressed by any of the equations above. To find the tan-

gential momentum equation we require that the velocity com-

ponent tangent to the discontinuity be continuous. The

tangential velocity compcnents are given by
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Vl= (n X~l) xn~
(n xV2 ) XjT

t 2

where i is the outward unit normal to the surface
n = VS = {S Sy ,S in Cartesian coordinates. The condition

of conservation of tangential momentum then becomes if the

square bracket notation is used:

(tangential [U] Iv] = w] at S 
momentum) S x  S y S z

where (u], [v], [w] denote the change of x, y and z components

of velocity across the discontinuity.

The equation above imposes two scalar conditions

at the discontinuity, as one should expect from physical

considerations. An alternative form of this equation is the

following:

(tangential [xvs = 0 At S 0 (1.22)

momentum)

Equations (1.19), (1.2)), (1.21) and (1.22) constitute the

complete set of the Rankine-Hugoniot conditions. They are

symmetrical and therefore remain unchanged if the brackets

are taken to denote the change upstream rather than downstream

through the discontinuity. A definite sense of flow direction

is provided by the second law of thermodynamics, which requires

that the entropy shall not decrease across a discontinuity.

The change of entropy is given by [Ref. 1: p. 60]:
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-s1 ln[(2 l/(y-1) (2)-y/(Y-l)
R p1  P

and the requirement stated gives the following condition

which should accompany the Rankine-Hugoniot conditions

(2nd law of > 0 at S = 0 (1.23)
thermo.)y

It should be noted that so far we have avoided using the

term shock instead of discontinuity, though shocks are the

only possible physical discontinuities. This was done on

purpose since we intend to use the Rankine-Hugoniot condi-

tions across hypothetical expansion fronts (negative or expan-

sion shocks) through an iterative procedure so that in the

limit condition (1.23) should not be violated.

4. Shock-Expansion Flows

Unsteady flows with shock waves or expansion waves

are considered in this thesis. These unsteady flows will be

solved by first finding the corresponding steady flow solution

and then using it as a reference flow in calculating the un-

steady perturbation flow.

Since a number of exact steady flow conditions are

already available, they will be utilized as reference flows

in finding the governing equations and boundary conditions

of the corresponding unsteady flows. They include the super-

sonic uniform wedge flow and the Prandtl-Meyer expansion flow.

The results for these steady flows are stated below for easy

reference.
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rI
a. Wedge Flow

Consider steady uniform supersonic flow past a

symmetrical two-dimensional wedge with semi-vertex angle 8

(Figure 1.5). The wedge is assumed stationary. Oblique

shocks will be formed at angles a measured from the free

stream direction. By conservation of momentum the tangential

component of velocity is continuous across the shock so that

V t= V Then V and V are related by the normal shock

relations. Since V = V1 sin$ and V = V2 sin the normal

shock relations can be used directly with M1 replaced by

M1 sin$ and M2 replaced by M2 sin@. The resulting relations

for the oblique shocks are

P2  2yM 2 sin2 a - (Y-l)
P1 1

, ,%l

"v2 7 P 2

Figure 1.5. Steady supersonic flow past a stationary

wedge
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2 22
2 (Y-1)M 2sin 2B +2

M2 sin 20 = 21
2  2yM 12sin2 - (Y-1)

P2 (Y+l) M2 sin2 B2 2

P - 2 + (y-1)Mlsin 8

P2 tanS
P1  tan 0

From the last two relations eliminating 2 and recalling
Pi

that = 8-6 we get

2.2
M sin 8 -1

tan 6 cot + 2 (M2 sin2-1) (1.24)
2 1 2-T- M1 - (Msi)

One way to solve this equation, i.e., to find 8 for given

M1 and e is to express it as a cubic equation in x = cot B and

select the appropriate positive root corresponding physically

to the weak shock wave [Ref. 2: pp. 452-453]. The following

equivalent equation was used in this thesis for numerical

calculations

(1 +-=1-M2) x3 (M21 ) cote X2+( 2) )x +cot 8 0

where x = tan 8.

For attached shock waves this equation gives three

real roots for a and the middle one is the one corresponding

to the weak shock wave.
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A maximum deflection angle for given M1 (beyond

which the shock becomes detached ) can be found from equation

(1.24) by differentiating it with respect to a and equating

to zero.

b. Prandtl-meyer Flow

Consider steady, two dimensional, uniform super-

sonic flow over a convex corner (Figure 1.6a). A turn of

the flow through a single oblique expansion wave is not

possible since this would lead to a decrease in entropy.

The flow expands isentropically through an infinite number

of centered straight Mach lines that form the so-called

Prandtl-Meyer expansion fan. Thus upstream of the ray OB

where e = e the flow is uniform with Mach number M and

downstream of the ray OC where e = e1 the flow is also uni-

form with Mach number MI. For angles e such that e < 8 < 1

the flow field has the same properties along any ray

6 = constant. The polar coordinate system shown has been

chosen so that F =a + 7 + P(M ) where P(M) is the Prandtl-

Meyer function

P(M)= 1 - tan

with A = (y-1)/2 and y the ratio of specific heats of the

gas. The Mach number M1 is given by

1For the wedge at an angle of attack a the flow deflec-
tion angles are 6+a and 6-a for the lower and upper sides
respectively.
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U0.

L/0

D

Figure 1.6a. Steady supersonic flow over a convex corner

actual surface hypothetical surf ace

"O-.stagnant fluid region

Figure 1.6b. Expansion over a corner with a > I(M)ma
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P (M) = P (M.) + a

Along any ray e in the expansion fan the Mach number pressure

and density are given by the following relations.

6 tan - I [(M2-1) 1/2

p= E (M0 ) y/(y-1)
E (M)

= E ) [M]/(y-1)

E(M)

where:

E(M) = + M2

2

The r- and 6-velocity components in the expansion fan are

given by

V = c sin e
r

Ve = Xc cos e

where:

C = U

It can be seen that the Prandtl-Meyer function

P(M) defined above has a maximum value for M - -. This value

is
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P (M)m 7T( yl~yl 1

For convex corner angles a > P(M) mx- P(.)tesralnsbhd

the expansion fan behave as though the flow occurred over an

expansion of P(M) and for an inviscid fluid a region ofmax

stagnant fluid lies between the hypothetical position of the

body as sensed by the flow and the actual position of the

body (Figure 1.6b). whenever this occurred in numerical

calculations performed, the influence of the flow on the sur-

face of the corner 1 was assumed negligible.

B. LINEARIZED POTENTIAL EQUATION

The so-called linearized theory of supersonic flow builds

up the flow produced by the motion of a body by superposi-

tion of small disturbances such as those produced by a moving

sound source. One can develop in this way relatively simple

methods for the computation of velocity and pressure distri-

butions in the field.

In the case of vortex-free flow, the equations of motion

can be reduced to equations analogous to the wave equation.

The coordinate parallel to the direction of the main flow

plays the role of the time coordinate. Hence the methods

of finding solutions of the wave equation can be used.

1We mean that in the equivalent case of a flat plate
at an angle of attack at the pressure on its upper surface
was assumed zero.
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The linearized theory however has serious limitations.

First, it gives only a first approximation since all devia-

tions from the uniform parallel flow are considered small

and therefore additive. This is justified for very thin or

slender bodies at small angles of attack only. Second, there

are speed ranges in which the linearization of the equation

of motion even for small disturbances is not justified. For

the linearized theory to be valid the following two conditions

must be met.

(a) The perturbation velocities must be small in compari-

son to both the main stream velocity and the velocity of sound.

This condition excludes the case of very high velocities

since if the mean stream velocity is several times larger

than the sound velocity, disturbances which are small rela-

tive to the mean stream velocity may be of the same order of

magnitude as the sound velocity. This speed range is called

the hypersonic range.

(b) The perturbation velocities must be small in comparison

to the difference of the main stream velocity and the sound

velocity. This condition excludes therange near M = 1, the

so-called transonic range.

In spite of the limitations described above the lineari-

zation of the equations of inviscid, compressible fluids

proved to be of excellent use in developing approximate solu-

tions in the supersonic range.

There are three general methods used in the linearized

theory of supersonic aerodynamics.
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(a) The method of fundamental solutions or sources. This

method is based on the superposition of fundamental solutions

of the linearized hyperbolic equation for small perturba-

tions of a uniform supersonic flow. In formulating wing

problems this method uses sources and doublets located in

the plane of the wing and the strength of these singularities

is determined so that the boundary conditions applicable to

the wing planform and shape are satisfied.

(b) The methods of acoustic analogy and operational cal-

culus. In these methods the solution of the hyperbolic equa-

tion is expressed by means of Fourier and Laplace integrals

respectively. The second method is better adapted to super-

sonic flow problems since the Laplace integrals exclude the

possibility of upstream travelling signals while in the case

of Fourier integrals one has to impose additional conditions

to secure that this possibility is excluded.

(c) The method of conical flows. This method is based on

conical flows, i.e., flows for which the velocity components

at points lying on a straight line drawn from a point chosen

as vertex are independent of the distance from the vertex.

In this method the solution of a hyperbolic equation in three

variables is reduced to the solution of Laplace's equation or

wave equation in two variables and the existing methods of

conformal transformations and the theory of functions of com-

plex variables can be employed.

Methods of higher approximations, i.e., methods which

lead from the simple case of the linearized solution toward
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the exact one in successive steps, thus extending the range

of satisfactory approximation, are required whenever the

perturbation velocities are not small compared to the main

stream velocity.

In this section the concept of irrotationality will be

introduced and then the basic assumptions and steps followed

in deriving the linearized potential equation and the appli-

cable boundary conditions for the general flow problem of a

body in supersonic flow will be described. In the next sec-

tion the linearized wing problem will be described.

1. Irrotational Flows

By potential flow we mean that the velocity V is

derivable from a scalar velocity potential €, i.e., v = grado.

On the other hand the vorticity or rotation w in a fluid is

defined as W = curl V and the flow is called irrotational

if w = 0 or equivalently if

av au aw 3v au aw 0
ax ay ay az az ax

where u, v, w are the x-, y- and z- components of V.

Physically the irrotationality of the fluid means

that the fluid particles have zero moment of. momentum about

their own center-of-gravity' axes or simply that they remain

parallel to themselves as they move around.

The condition of irrotationality of the flow is a

necessary and sufficient one for the assumption of a poten-

tial flow since the mathematical identities curl grade = 0
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and div curl V = 0 show that the velocity V can then be

put in the form V = grado.

The irrotationality throughout a flow field can be

proved by applying the theorems of Kelvin and Stokes.

Stokes' theorem states that the area sum of the rotation over

a given area is equal to the integral of the velocity around

a curve bounding the area. Formally,

f Wd = f curl .dX = V-d
A

The line integral is called circulation and is denoted by

r. Thus r - V-dT = f .d.

As a consequence of Stokes' theorem, w = 0 if the

circulation r vanishes for all paths wholly within a simply

connected flow region.

Kelvin's theorem on the other hand states that the

circulation r about any contour always composed of the same

fluid particles (i.e., a fluid line) is constant in an inviscid

fluid with only conservative or irrotational body forces.

For an inviscid fluid it states that DF = - dk and it reducesDt yP

to - 0 when there is a simple relation connecting p andDt

p. Physically it means that circulation 1 about any line

contour remains constant in time as we move along with the

fluid.

It is a consequence of both theorems that initially

irrotational flows originating in a reservoir under uniform

stagnation conditions or from straight parallel streamlines
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will remain irrotational throughout the flow field at all

times if there are no shock waves.

2. Linearized Potential Flow Equation

In view of the above reasoning we assume that the whole

flow field is irrotational and set V = gradl. As a result

the three unknown velocity components u, v, w are expressed

in terms of the scalar field t by

u = v = y, w = z

By using relation (1.3) the momentum equation (1.4)

may be written as

V V 2 --
p(2 + grad - - V x curl V) = -gradp

at 2

or since curl V = 0 and v = gradO we may write

grad( -+ Y - + f ) = 0

By integration we get

a +V 2 += !P F (t)

If we define D = D-fF(t)dt this equation becomes

V 
2

By differentiating this relation with respect to time

and by taking its gradient we get the following two relations,
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if the additional relation 2 d P for the velocity of

sound is used.

)V , ) v 2  2
a =L

=p at

aD V2  2
-grad(-t + -y) = gradpg r a d ( a dp

We now introduce continuity equation (1.6) which, since

div = 7 2, may be written as

1 _ + -gradp + V2 P = 0

Introducing in this equation the last two relations from

momentum equation we get

1 , @2@ aV2  V2

2 L- - 2 + L-2- + V grad(--)] = 0 (1.25)
Sat

Equation (1.25) is the exact non-linear differential equation

to be satisfied by the velocity potential D for an unsteady,

inviscid. irrotational flow. Because of its strong non-

linearity, solutions have been found in very few special

cases. Thus the small disturbance concept is introduced which

leads to linearization of the equation.

We assume that the velocity vector V differs only

slightly in direction and magnitude from the free stream

velocity U., taken along the x-axis, and we define a distur-

bance velocity potential T obtained from the total velocity

potential t by separating out the contribution of the uniform

flow. In this way we have
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= Ux+ T

The local velocity components are then given by

u = U +u', v = v' w

where u', v' 1 w' are the perturbation or disturbance veloci-

ties which can be found from

U' = x , v' = y, w' = z

We regard all disturbance velocities small in compari-

son with U., a and U ,- and all pressure and density changes

small in comparison with main stream pressure and density.

We also assume that the small quantities change gradually

in all directions and that time variations are not too rapid.

We now return to equation (1.25) and assume that

the linear terms in Laplace's operator are of the same order

of magnitude. Substituting the velocity V in this equation

and retaining first order terms only we get

2 2 222 T - 1 1 +2,aT +U2aT
-+ = 0 (1.26)
a t ax

where the second term in parenthesis is found from

1 CL

and the third term in parenthesis is found from
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1 (D20 _ 1 2 2
2x - -x cU+u)2 xx -

To complete the linearization of (1.26) we should dispose1
of the factor 1

2 2
For steady flow a may be eliminated by using the

following relation which is a consequence of the first law

of thermodynamics

a + j. 2 = constant
2

For unsteady flow let a slender body move in the flow

field and denote the velocity of sound far upstream in the

undisturbed field by the constant a.. In the vicinity of the

body a2 will then be a variable depending on position and

can be represented by a sum of terms of the form

2 2 2
a a + (Aa) 2+.

As a first approximation we set a = a and introduce this

value in equation (1.26) getting

7 2 T - 1 1 a'2 T +  2 +2 D - 0 (1.27)

a0 at xttooax
U

An alternative form of this equation with M= - is

2 2M30 1 0
(i -M;)Txx +Tyy +zz - -- T xt -7 Ttt 0 (1.28)

Go ~ac

Equation (1.28) is the linearized unsteady potential equa-

tion and is used as the basic equation in most aerodynamic
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analyses. Because of the assumptions made and terms retained

this equation is valid for unsteady, inviscid, irrotational

flows that are purely subsonic or purely supersonic and is

limited to small disturbances only.

3. Linearized Boundary Conditions

To completely specify the mathematical problem that

describes the flow, the following boundary conditions need

generally be prescribed [Ref. 3: pp. 1.27-1.29].

a) Surface Boundary Condition: The wing surface is

impenetrable to the medium.

b) Edge Conditions: Enough viscosity remains in the

inviscid fluid to determine the flow pattern near sharp

edges.

c) Wake Conditions: The free vorticity shed from the

trailing edge must have a circulation which vanishes together

with the bound circulation. It is furthermore assumed that

the shed wake is a continuous sheet of discontinuity which

is coplanar with the wing projection in the direction of

flight. Edge effects and rolling up of the sheet are

disregarded.

d) Conditions at Infinity: A state of uniform flow must

be prescribed at inifinity. In addition the Sommerfeld

radiation condition requires waves to propagate away from

sources of disturbance toward infinity.

e) Other Conditions: As the most important additional

condition, the requirement that proper account be taken of
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zones of influence and action at supersonic flow velocities,

is mentioned.

The first of the above conditions, namely, the con-

dition of impermeability, as applied to a wing or airfoil,

is considered next. The procedure can be easily extended to

cover other bodies of interest such as slender fuselages, etc.

Consider a wing fixed relative to a Cartesian co-

ordinate system so that it lies close to the xy-plane (Figure

1.7). Assume that the wing is submerged in an infinite mass

of fluid moving with velocity U, in the positive x-axis.

Let the upper and lower surfaces of the wing be expressed by

equations

Su  = Z - Zu(x,y,t) = 0

St = z - z (x,y,t) = 0

The condition of impermeability of these surfaces,

by recalling equation (1.14), requires that

az 3z azw= u + u u +V Ufo z=z (x,y) inR
a-- Z fr u

w = - + u -z + v a for z = z, (x,y) in Rat ax ay ua

where u, v, w are the components of velocity V and Ra is

the portion of the xy-plane covered by the projection of the

planform.

These are exact, non-linear equations. To linearize

them assume, as before, that the disturbance velocities are
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Zl

U6

Z Z mathematical planez I  surface

Figure 1.7. Linearized boundary conditions for a wing

small compared to the free stream velocity U and also that3 z 3 z =
the slopes - - -, -, etc., are very small compared to unity.

Then retaining first order terms only we get

w - t + U - for z = zu , (x,y) in Ra
az u az

w for z=z, (x,y) in Ra
at ax V Xy inRa

Since zu and z are small compared to the wing chord

we may, as a further step, replace the actual wing with an

infinitesimally thick surface of discontinuities in u, v, w

and pressure p. With this mathematical plane surface located

on the xy-plane, we may expand w in Maclaurin series about

its values just above and below the xy-plane
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u azvOt

w(xIy,zzft) =w(x,y,0-,t) +z @w(x,y,o- t) +

Using the same arguments as before the higher order

product terms can be neglected and the impermeability or

flow tangency conditions take the following linear forms

w(x,y,O +,t) a-u+ U 3zu (x,y) in R (1.29a)

W(Xryla It) - + U - (: in Rl (1.29b);t a
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III. OSCILLATING WINGS OF GENERAL PLANFORM
IN SUPERSONIC/HYPERSONIC FLOW

Consider a uniform (spacewise and timewise) supersonic

or hypersonic flow of an inviscid perfect gas with constant

specific he.ts past a flat wing of a general planform shape

at an angle of attack a. Assume that the wing is performing

a small amplitude slow pitching oscillation.

The problem considered is to find the unsteady flow

quantities in disturbed regions over the wing and thus its

stiffness and damping derivatives.

The governing equations of motion are given by equations

(la-lc), restated below.

--P + V.(pV) = 0 (2.1a)at

+ vpv + 0 (2.lb)
at p

a -P- ) + V'( 0 (2.1c)

where p, p, V and y are the pressure, density, velocity

and adiabatic exponent of the gas.

The flow tangency condition to be satisfied at the sur-

face of the body is given by equation (1.14), restated below.

aS + V'VS = 0 At S = 0 (2.2)

where S(F,t) = 0 is the equation of the body surface.
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The fluid-shock-fluid boundary conditions to be satis-

fied across the shock are given by equations (1.19-1.22),

restated below.

[p(22 + V-VG) = 0 At G = 0 (2.3a)

G - 2 2]_
P(2- + V.VG) + p(VG) 2 0 (2.3b)

1( + V. 2 y1 (VG )2  = 0 (2.3c)

V xSVG] = 0 (2.3d)

where G(r,t) = 0 is the equation of the unknown shock shape

and the square brackets denote the change in the enclosed

quantities across the shock.

Equations (2.1-2.3) are nonlinear. The nonlinearity of

the governing equations and boundary conditions along with

the existence of a shock with an unknown shape, contribute

to the complexity of the problem considered.

For low supersonic Mach numbers and very low angles of

attack shock waves can be replaced by Mach waves and the

linearized supersonic potential flow theory can be employed.

The problem can then be solved, at least for certain groups

of planform shapes, by fairly general methods. The fundamen-

tals of the linearized supersonic potential flow theory as

applied to a three-dimensional oscillating wing are presented

in Section III.B.

For high angles of attack and/or Mach numbers the shock

waves become strong and the linearized theory cannot be used.
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To overcome the difficulties encountered in this case, aamely

the existence of the shock and the nonlinearity of the equa-

tions, Professor Hui proposed the use of a perturbation method

in which the unsteady flow field is regarded as a small

perturbation to some reference steady flow. Thus the unsteady

flow problem is to be solved by first finding the corresponding

steady flow solution and then using it as a reference flow

in calculating the unsteady perturbation flow. The solution

of the three-dimensional wing by this method will be presented

in Section III.A.

Finally, in Section III.C results for the stability deriva-

tives are presented. A comparison with linearized potential

flow theory results is also included.

A. PROFESSOR HUI'S THEORY

In this section the problem of dynamic stability of a

flat wing of a general planform shape at arbitrary angles of

attack in steady supersonic/hypersonic flow is considered.

The wing is assumed to be oscillating in pitch with small

ampli.ude and frequency and the bow shock be attached to the

body at all times.

The problem is covered in [Ref. 5] and only the basic

steps will be included here, in Section III.A.3. Its solu-

tion is based on the assumption of an inviscid perfect gas

with constant specific heats and the perturbation method

developed by Professor Hui is employed to calculate the

resulting unsteady flows over the upper and lower surfaces
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of a two-dimensional flat plate. Finally, the strip th~eory

approximation is utilized to combine the effects of these

flows for the case of a three-dimensional wing, provided that

the bow shock is attached and therefore the flows are independent.

The unsteady flows over the lower and upper sides of a

two-dimensional flat plate are studied in (Ref. 6,71 and

(Ref. 8] respectively. Nevertheless, we will indicate, in

the following first two sections, III.A.l and III.A.2, the

way in which these flow problems are formulated and solved.

We will also give the solutions for the complete set of flow

quantities in the disturbed regions. These flow quantities

will be used in Section IV where the effects of upstream

unsteadiness in the flow are considered.

1. Two-Dimensional Oscillating Flat Plate--Compression
Side

Instead of a flat plate the equivalent flow problem

of a two-dimensional wedge is considered. This problem is

formulated and solved in (Ref. 6,7] with the ultimate goal

of studying the stability of wedges/caret wings. In what

follows in this and the next subsection,

a) The major steps in the method of solution are

indicated.

b) A generalized approach that permits the formulation of

the fluid-shock-fluid boundary conditions is adopted. This

approach is described in Appendix A and the formulation of

the boundary conditions for the two cases is given in Appen-

dices B and C.
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c) Some of the results and discussions contained in

[Ref. 6,7,81, pertaining to the stability of wedges/caret

wings and flat plates, are not included since they are not

directly related to the subject matter of this thesis.

d) on the other hand the solutions for the complete set

of the flow quantities in the disturbed regions, which are

not included in the above references, are given. Much of

the mathematical detail in obtaining these solutions is

omitted. These flow quantities will be used, as mentioned

before, in Section IV where the effects of upstream unsteadi-

ness in the flow are considered.

e) The same symbols as those used in the references will,

in general, be employed. Changes will be limited to those

necessary for clarification purposes or generalization of

approach.

a. Problem Formulation

Consider a two-dimensional wedge of length T., at

design condition (zero mean angle of attack), in a supersonic/

hypersonic, uniform, steady flow of an inviscid perfect gas

with constant specific heats (Figure 2.1a). Assume that the

wedge is performing a low amplitude and frequency harmonic

oscillation in pitch with given circular frequency w, about

an axis perpendicular to the plane of the paper, through the

point C shown. Let a system of cartesian coordinates Oxy_

be attached to the wedge so that 0 is at its apex and axis

0i is along the mean position of the upper surface. The bow

shock is assumed to be attached to the body and the flow
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y EiO
~ wedge surface in

Us. steady flow

unsteady flow

shock surface in
-steady ref-erence flow

h unsteady flow

Figure 2.1a. oscillating wedge in uniform steady flow

Figure 2.1b. oscillating flat plate--Compression side
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quantities on the upper surface of the wedge are to be

found. For all practical purposes the solution to this

problem will give the flow quantities on the lower side of a

two-dimensional flat plate of length T sec e at an angle of
attack 0 (Figure 2.1b).

b. Method of Solution

The unsteady flow over the upper surface of the

wedge will be found by perturbing the steady shock flow con-

sidered in Section II.A.4.a.

Denote by Um, pw, p. the velocity, pressure and

density in region A. Denote by u0 or , P 0P the velocity,

pressure and density of the steady reference flow in region

B. Non-dimensional lengths and time are introduced, defined

by

u

x - -Y- y and t =-t(2.4)

Assume that, as a result of the oscillation of

the wedge, the perturbed flow quantities in region B are

given by

u = u 0+ eu + .. (2.5a)

v= Ev + . (2.5b)

p = PO + ep + .. (2.5Sc)

P= P0 +ep +.. (2. 5d)
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where E describes the deviation of the unsteady flow from

the reference steady flow.

Substitute quantities (2.5) in the governing

equations of motion (2.1), non-dimensionalize the indepen-

dent variables, by using relations (2.4) and get the following

perturbation equations

ut +u = - I (2.6a)

V +s-1v- py (2.6b)vt + x  Po0Uo

Pt +  = 2(P + P) (2.6c)

Pt+ Px+P (ux +Vy) = 0 (2.6d)
0

where subscripts denote partial differentiation and a is the

speed of sound in the reference steady flow. Assume that

the perturbation quantities u, v, p and p have the form

u = u0 eiktU(x,y) (2.7a)

v = u0 e ktV(x,y) (2.7b)

p = POyMoeikp(x,y) (2.7c)

p = pMektR(x,y) (2.7d)

where U, V, P and R are unknown quantities to be found, 0

is the Mach number in the reference steady flow and k is

60



the so-called reduced frequency of oscillation defined by

k = wk/u o . k is assumed to be small and the time indepen-
0

dent quantities U, V, P and R are expressed as power series

in (ik) of the form

(0)()
U = U + (ik)U + ... (2.8a)

v = V(0) + (ik)V(1) + (2.8b)

P = P1O) + (ik)P + ... (2.8c)

R = R(0) + (ik)R (I ) + ... (2.8d)

Expressions (2.8) are substituted in (2.7) and the resulting

expressions in the perturbation equations (2.6). By equating

the same order terms, in each of these equations, a sequence

of systems of partial differential equations is formed.

Only the systems of zeroth and first-order equations are of

interest in stability analysis. The zeroth-order equations

are

(0) = - P(0) (2.9a)Ox - - X
0

V(0) = - _1_ p(O) (2.9b)x Mo0 y

(0) = (0)(2.9c)Px x

U(O) + V(0) + M = 0 (2.9d)
x y x
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The first-order equations are

U(1) (1) = -U (2.10a)

0

i + i (1) = V( (2.10b)
x 0

P(1) - R() = R(0 ) p (0) (2.10c)
x x

( ) (1)( )(0U x + V y + M R = -M 0  (2.10d)x y o x o

Next we consider the boundary conditions applicable

to the problem.

Along the surface, the condition to be satisfied

is the flow tangency condition given by equation (2.2).

The equation of the surface for a stationary wedge is given

by S = y = 0 and for an oscillating wedge is given by
^ikt

S(x,y,t) = y +E(h cos 6 -x) = 0 where E = Ee . Equation

(2.2) then, gives with i = fU,7} = u0 {1 +EU,cV},

V(x,y) = 1 + (ik)(x-h cos 8) at y = E(x-h cos 9)

Expanding V(x,y) about y = 0 and neglecting higher-order

terms we get the linearized condition

V(x,0) = 1 + (ik)k-h cos9) at y = 0

Use of equation (2.8b) gives

V( )  1 At y = 0 (2.9e)
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V ( ) = x-hcose At y = 0 (2.1Oe)

Across the shock, the conditions to be satisfied, are the

conditions given by (2.3). The equation of the shock in

the steady reference flow is given by Gs = -y + x tan # = 0.

Let the equation of the shock in the unsteady flow be given

by G = -y + x tan 0 + eQ(x) = 0, where Q(x) is an unknown

function to be determined as part of the solution and

= eikt To find the boundary conditions across the shock

we substitute expressions (2.7) in (2.5) and the resulting

expressions in equations (2.3). The boundary conditions,

after linearization, are given by

V = AQ' + (ik)BQ AT y = x tan 0 (2.11a)

P = CQ' + (ik)DQ (2.11b)

U = EQ' + (ik)FQ (2.11c)

R = GQ' + (ik)JQ (2.11d)

where Q' = dQ/dx and the values for the constants A through

J, which depend on the reference steady flow, are given in

Appendix B. The derivation of these relations is lengthy

and tedious, even for the case considered here, where there

are no upstream disturbances. In Appendix A equations (2.3)

are put in an alternate form. This form permits a much easier

solution of the equations and is repeatedly used throughout

this thesis.
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Expressing the time independent quantities, U,

V, P and R by their expressions as given by equations (2.8)

we get the following boundary conditions for the zeroth and

first-order systems respectively.

At y = x tan V (0 ) = AQ (0) (2.9f)

P() = CQ (2.9g)

(0) 0
U = EQ' 0 ) (2.9h)

R (0)= GQ() (2.9i)

at y = x tan 0 V( I ) = AQI(i) + BQ(0) (2.10f)

P(l) = CQ'(1) + DQ (2.10g)

U~x ~ (1) ~ (0)
= EQ + FQ (2.10h)

R ( ) = GQI(1) + HQ(0) (2.10i)

c. Complete Solution

Two boundary value problems have been set up.

The zeroth-order equations (2.9a-2.9d) and the

zeroth-order boundary conditions (2.9e-2.9i) constitute the

first boundary value problem. This problem, which will be

solved first, corresponds to the problem of steady flow past

a wedge and its solution should give the flow-quantities

behind the shock for a stationary wedge. This result is

shown in Appendix B.
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The first-order equations (2.10a-2.10d) and the

first-order boundary conditions (2.10e-2.10i) constitute

the second boundary value problem.

In bothproblems the equations and boundary con-

ditions are linear and therefore suggest for the unknowns

U(i), ), P and , (i = 0,1), solutions that are

linear combinations of the non-dimensional spatial coordinates

x and y.

In view of the above reasoning, we assume for the

first problem a solution of the form

U(0) = u(O)x + u0)y + u (0) (2.12a)

V(0) = V(0)x + v(0)y + v(0) (2.12b)
1 X v2  3

p(0) = P (0)x + p + P(2.12c)
p1  ~ 2  y~ 3

R(0 ) = r(0)x + r (0)y + r (0) (2.12d)

Q(0) = q(O)x + q(0) (2.12e)
Q q1  x~ 2

Substitution of these values into the zeroth-order equations

and boundary conditions (2.9) gives the following solution

U( 0 )  u( 0 ) =E/=u3  = (2.13a)

V (
-

) = v 0 ) = 1 (2.13b)

p(0) = P (0) = C/A (2.13c)

p3
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R = r = G/A (2.13d)

Q(0) xA- q(0)Q0 = x/A q2  = x/A - h cos e (2.13e)

where the coefficient q (0 ) was found from the additional con-

dition that the bow shock is attached to the leading edge

of the body. Recalling that the equations of the surface

and the shock are given by S(x,y,t) = -y+E (x-hcose) = 0

and G(x,y,t) = -y+xtano+eQ(x) = 0 we get the above result

by letting x = 0 in the equation e(x-hcose) = xtan+e(Q ( 0

+(ik)Q ( I ) ) •

Similarly to solve the second boundary value

problem we assume a solution of the form

U (I )  = UlW1x + u(1y + u(I )  (2.14a)
- 1  3+u

V ( I )  = v(l)x + v(1) y + v I )  (2.14b)
V = 1  x v2  y

P(1) = p(1)x + p(y + pl) (2.14c)

R ( I ) = r1 l)x + r y + r 3

1 q2  x~ 3Q(1 = q, x2 + q 2 x + q I3 (2.14e)

and substitute these values to the first-order equations and

boundary conditions (2.10). The resulting solution is given

below

q= -( 1 /M + D/M )/A + 2tano]
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(1l) (i) ~~

u [ql (E+C/M )+(E+F+D/M )/A]/tan +2
20 0

u I ) = h cos 6 [E (B-l)/A -F]

V = i, v )  -h cos 8

v = (Aq) +B/A-1)/tan

Cq + D/A + 2M tan

= -2M0

p() 2 M

= h cos 6[C(B-I)/A -D)

i = () + (D +C-G)/A + 2 M tan
0

r 2 1) = [(G -C)q + (G +H-C-D)/A]/tan -2M

(1)r I  = h cos e[G(B-1) /A -HI

q~l) = k2 (A-B-C+E/M )/A -M ° tan O[D/A+2 Motano) ]/2(k 2A

+ CM tano)

k 2 M /(M-_l)
0 0

2. Two-Dimensional Oscillating Flat Plate--Expansion
Side

This problem is formulated and solved in [Ref. 8].
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a. Problem Formulation

Consider a two-dimensional flat plate of length

Z in a supersonic/hypersonic uniform steady flow of an

inviscid perfect gas with constant specific heats. Assume

that the plate is performing a low amplitude and frequency

harmonic oscillation about its leading edge. Let a system

of Cartesian coordinates Oxy be attached to the body so that

O coincides with the leading edge of the plate and axis Ox

is along its mean position (Figure 2.2a). The bow shock is

assumed to be attached to the leading edge and the flow

quantities on the upper surface of the plate (in Region C)

are required.

b. Method of Solution

The unsteady flow, over the upper surface of

the oscillating plate, will be found by perturbing the

steady Prandtl-Meyer flow, considered in Section II.A.4.b.

Denote by Uw, p. and p. the velocity, pressure and density

in Region A. Denote by u1 , PI' "l the velocity, pressure

and density of the reference steady flow in region C. The

solution procedure that follows is similar to the one pre-

sented in Section III.A.l.b and most of the assumptions and

results given there, apply to this section too, provided

that u, p 0, Po, Mo and a (the reference steady flow quanti-

ties over the compression side of the flat plate) are replaced

by ul , pl, pl, M1 and a, (the reference steady flow quantities

over the epansion side of the flat plate).
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- .unsteady flow

LIOD I MOO -IF V reference steady flow

0 C

/ ,I/PAI flat plate

Figure 2.2a. Oscillating flat plate--Expansion side
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Non-dimensional time and lengths are introduced,

defined by (2.4). As a result of the oscillation of the

plate assume that the perturbed flow quantities in region C

are given by (2.5). The resulting perturbation equations are

given by (2.6). Assume that the perturbation quantities are

given by (2.7) and let the time independent quantities U, V,

P and R be expressed as power series:.n (ik) by (2.8). The

zeroth and first-order equations, derived as before, are

given by (2.9a-2.9d) and (2.10a-2.10d) restated below.

(0) i p(0) (2.16a)x = 1 x

V(0) - 1 P(O) (2.16b)
x M1 y

p(0) = R(0) (2.16c)
x x

U(0) + V(0) + M1 R(0) 0 (2.16d)

(1 1 = - U (0 )  (2.17a)

(1)+ 1 () -
) (2.17b)Vx + Py  (

p(1) - R(=) R (0) - p(0) (2.17c)
x x

U ( 1 ) + V (I ) + M= - M R (0 )  (2.17d)x y 1x1

We now consider the boundary conditions applica-

ble to the problem.
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Let the equation of the oscillating surface of

the plate be given by S(x,y,t) y- x = 0.1 The flow

tangency condition (2.2), with V = U {l +E:U,V}, gives after

linearization

V ( 0 ) = 1 At y = 0 (2.16e)

V = x At y = 0 (2.17e)

We next consider the boundary conditions across

the surface that is separating regions B anc C. We assume

that as a result of the small amplitude slow oscillations

of the body the separating surface is slightly deformed and

its equation is given by G - -y + x tan p + EQ (x) = 0 where

Q(x) is an unknown function which may be expanded as

(0) (1)
Q(x) = Q(0) + (ik)Q + .... We call the flow expansion

an expansion front or, simply, front and assume

that upstream of it the Prandtl-Meyer flow is not disturbed

while, along the front, the unsteady flow matches the steady

Prandtl Meyer flow continuously. The assumptions made are

completely analogous to the assumptions made in the case of

a finite compression shock discontinuity and the Rankine-

Hugoniot conditions (2.3) may be used to give the boundary

conditions across the expansion front. We note that, since

iThe difference in the form of this equation and the one
considered in the previous section is due to our assumption
that in this case the flat plate is oscillating about its
LZ and thus h = 0.
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we are dealing with an infinitely weak discontinuity, the

flow across the front is isentropic. The procedure is given in

Appendix C and the resulting boundary conditions, after lineari-

zation and-use of equations (2.8), are given below.

V (0 ) = A'Q'(0 ) At y = x tan€ (2.16f)

p(0) = C'Q' (0) (2.16g)

U(0 )  = E'Q'(0 ) (2.16h)

R(0) = G'Q'(0) (2.16i)

V (I ) = A'Q'(I) + BQ(0) At y =x tan ¢ (2.17f)

p(l) = C'Q'(i) + DQ(0) (2.17g)

U (I )  = E'Q'(i) + FQ(0 ) (2.17h)

R = G'Q' (1) + JQ(O) (2.17i)

where the coefficients A' through J' depend on the reference

steady flow and are given in Appendix C.

c. Complete Solution

Two boundary value problems have, again, been

set up and will be solved successively. The zeroth-order

equations and boundary conditions (2.16) constitute the

first problem, which corresponds to a steady
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Prandtl-Meyer flow problem. To solve it assume, as before,

that the unknowns have the form given by (2.12), substitute

in (2.16) and get with K = VM1/

p(0) (0) = (2.18a)
p3

R(0) = r(0) = (2.18b)

U (0)= = _()/M1  (2.18c)

V( 0 ) = v 0 ) = 1 (2.18d)

Q(0) = y+l 4 (0) (2.18e)Q --4-- x +qq 21e

where the coefficient q2 0) = 0 since, in this case, the

plate is oscillating about its LE.

The second boundary value problem consists of

the first-order equations and boundary conditions given by

(2.17). In this case the unknowns are expressed by (2.14)

and the resulting solution is

1 () M1 (M2_"2)
1M x- 2MIy (2.19a)

R()= p(l) (2.19b)

3M2 +1
U()= 1 x - y (2.19c)

2) 3 M2_ 1
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2 -1 
V( )  xy (2.19d)

1

3. Three-Dimensional Oscillating Wings of Arbitrary
Planform Shape

The problem is formulated and solved in [Ref. 5]

and only the major steps in the method of solution are given

here.

a. Problem Formulation

Consider an oscillating wing of arbitrary plan-

form shape at an angle of attack in a steady, uniform, super-

sonic/hypersonic flow (Figure 2.3). Assume that the oscilla-

tions are periodic with small amplitude and frequency and

that the bow shock is attached to the wing. We let the

pressure, density, velocity and Mach number of the approach-

ing flow be given by pw, pm, U and M . We also denote the

total area and the root chord of the wing by S and Z respec-

tively and the distance of the pivot position from the leading

edge by xc . We assume that the pitching motion of the wing

is described by

e(t) =

where T and w are the amplitude and circular frequency of

oscillation and t is the non-dimensional time.

We define the reduced frequency of oscillation

by

k = w2/U.
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x/I =f (y/b) dy

z

U'4

0 C

Figure 2.3. Three-dimensional wing
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b. Method of Solution

The in-pitch stability derivatives of the wing

are required. The pitching moment coefficient Cm , the

stiffness derivative -C and the damping in-pitch deriva-me

tive -C are defined by

Cm - 2M/p0U =s (l/XS)f f (X-Xc)Cp (x,y,t)dS

- 8(t)[(-Cm ) + (ik) (-C m )] (2.20)

where M is the moment about the pivot axis and C is thep
pressure coefficient.

The pressure coefficient is defined as usual by
2 (p - P.,)

C -

and using the tdo-dinensional flow assumption can also be written in the form

x
C = (C) + 8 (t) [A+ ik(B -C )]
P P 0  2. 12

= (Cp)o + 8(t) [A +i- (Bx -Cx)] (2.21)

where A, B and C are dimensionless constants which are

functions of geometry and steady flow quantities and (Cp)o

is the mean pressure coefficient corresponding to e(t) = 0.

This coefficient has no contribution to the stability

derivatives and will be neglected.

Our goal is to calculate the coefficients A, B,

C appearing in relation (2.21) and use the pressure coefficient
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in relation (2.20) to obtain the stability derivatives.

It is clear that, for a two-dimensional flat plate with

attached shock wave, the coefficients will be the sum of

independently obtained coefficients over the compression

and expansion sides of the plate respectively. Thus the

coefficients will have the form

A = A£ - Au ,  B = B£ - Bu , C = C - Cu (2.22)

where the subscripts X and u denote the lower and upper

surface respectively.

The results from Section III.A.l and [Ref. 6,71

are used to obtain coefficients A, B z and C£9 of the form

A£ = 0C/A, B = 1° (2G-I), C = 1 (2.23a)

where Xo and p° are coefficients introduced to account for

differences in notation given by

S2 ()(o) 2, o= oU0UMO 0Mo o C /

and G, I are quantities defined in [Ref. 6,7].

Similarly the results from Section III.A.2 and

[Ref. 8] are used to obtain coefficients Au , Bu and Cu of

the form

Au -XM 1 /(M2-21) 0. u = Au1/i (2.23b)

B = P1M 1(M2_2)/(M_) 1.5
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where X1. 1 are correction coefficients to match present

notation of the form

2 ,Pl. Ul)2  X U./u

c. Solution

Substituting relations (2.23) in relation (2.22)

and putting the resulting expressions in relation (2.21)

we obtain the pressure coefficient for a two-dimensional

flat plate. We shall employ the strip theory to solve the

three-dimensional wing problem in hand, which means we will

assume that the flow, at each point of the wing, is two-

dimensional locally. This assumption permits the use of the

two-dimensional flat plate pressure coefficient for the case

of the three-dimensional flat wing.

Using relations (2.21) and (2.20) we get

-Cm A(I 1 - xc/Z) (2.24a)

-C = [. 12 +(C-B)I 4 ]-[(B+C)I1i +(C -B)I 3Ix c/Z+ C(x c/Z) 2

0 (2.24b)

where

I 1 = k j (g 2 -f 2 )dn, 12 = 2k/3 f (g3-f 3 )dn (2.25)
0 0

1 1 22
1 3 Ilk2k0 f f(g-f)dn, 14 = k f f(g -f )dn

k £b/S, n Y/b
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For delta wings with power law leading edges, i.e., wings

with f(-) = n I / n and g(n) = 1, equations (2.25) become

I, = (n+l)/(n+2) , 12 = (n+l)/(n+3) (2.25a)

13 = n/(n+2) , 14 = n/(n+3)

The minimum value of C obtained for pivot position

x c/ = [B+(2n+l)C]/2C(n+2)

is

(-C= - B+(2n+l)C ]2 + 4(B+nC)/(n+3)

By setting (-C M)min = 0 a stability boundary for power law

delta wings may be obtained, which is practically independent

of the power n, as shown in (Figure 2.4). Plots of C and

C vs a for several values of pivot axis position and powers

n are given in (Figure 2.5). In (Figures 2.6, 2.7) the

stability derivatives vs the pivot position are plotted for

several values of power n and angles of attack 100 and 200.

Comparisons of results obtained by the present theory with

results obtained by other theories and related discussions

are included in [Ref. 5] and will not be repeated here.

Nevertheless in Section III.C we will compare the present

results with potential flow theory results.
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B. LINEARIZED THEORY

It was pointed out in Section II that several methods

are used in the linearized theory of supersonic aerodynamics.

A simple application of one of these methods, the so-called

method of fundamental solutions, will be described in this

subsection. For this application a distribution of pulsating

sources over a "smpe planform will be considered.

Before dealing with this application, however, the notion

of a disturbance propagation in supersonic flow will be re-

viewed and the fundamental solution for a moving pulsating

source will be introduced.

1. Propagation of Disturbances

Supersonic flow is dominated by the fact that dis-

turbances travel with finite velocities, namely, the speed of

sound. In formulating the linearized potential equation

(1.28) deviations of -,:he speed of sound from its free stream

value a.were neglected and also the perturbation velocities

ul, v' w were taken very small compared to the free stream

velocity U. As a result any disturbance from a source

located at point (x,y,z), in a coordinate system fixed to

a body in the flow, can be felt only inside or on the surface

of a right cirular cone whose axis points downstream from

the source (Figure 2.8). An observer moving with the fluid

sees a pulse emitted at t - 0, expanding on a spherical sur-

face with instantaneous radius att and center moving down-

stream with velocity U... The positions of these expanding,
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Upstream zone of influence Downstream zone of influence

/ ,,d

Figure 2.8. Upstream and downstream zones of influence.

Disturbance located at ( ,n,;) at time t = 0

moving spheres form an envelope which is a cone of semivertex

angle

-a c 0 t -1 -i 1
= sin sin = tanU t M

where u is the Mach angle.

This cone is known as the Mach cone or downstream

zone of influence of the point (x,y,z) and its equation is

given by

(-V-x) 2 _ (M2_I)[(n-y)2 + (-z)2] = 0 (2,26)

On the other hand the point (xy,z) can be influenced

by sources whose locus is evidently a similar cone directed

forward from (x,y,z). This cone is known as the forecone

or upstream zone of influence and has the same equation except

that for this case x >
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Assume now that a steady supersonic flow has been

established past a stationary three dimensional wing lying

very close to the xy-plane. Regarding each point of the wing

as a disturbance source we can see that the downstream zone

of influence for the entire wing is bounded by the envelope

of the Mach cones emanating from the leading edge. If the

leading edge is straight (or the wing is two-dimensional)

the envelope reduces to the so-called Mach wedges.

To calculate the fluid motion at any point (x,y,z)

we need to consider only the contribution from the disturbance

sources that belong to the region of the xy-plane intercepted

by the forecone from point (x,y,z). This area of influence

forms a hyperbola and, with sources assumed to lie on the

xy-plane, is found from the equation of the forecone (2.26)

by setting = 0. We thus get

2 2 _ 2

(-1 2 = Y ±- (2.27)

A generalized supersonic planform with leading edge

AA'C'C, trailing edge DD'F'F and streamwise tips AF and CD

is considered next (Figure 2.9). For each point (x,y,0 + ) the

area of the sources that influence the point reduces to a

region bounded by two straight lines upstream of the point.

These lines found from the forecone equation (2.26) by setting

z =0 and= 0 are given by

x ± (y-rn) < x
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Figure 2.9. Generalized supersonic planform

and are shown as dotted lines making an angle p with the

x-axis (Figure 2.9) .

The portions A'BC' and D'EF' of the leading and

trailing edges are called supersonic since the velocity normal

to these edges is greater than the speed of sound. Similarly

the remaining portions of the leading and trailing edges are

called subsonic since the normal component of velocity is

less than the speed of sound. Along the supersonic portions

of the leading and trailing edges there is no communication

between the upper and lower surfaces of the wing and the flow
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over the top or bottom of the planform can be calculated

without reference to the shape of the opposite side. On

the contrary the upper and lower surfaces of the wing are

not independent along subsonic portions of the edges.

Points 1, 2 and 3 shown (Figure 2.9) are selected

to illustrate different sorts of upstream influence regions.

The difficulty in solving the linearized flow problem, i.e.,

finding the fluid motion at these points, increases as we

move from point 1 to point 3.

There exists no universal method of approach in solving

the linearized problem for different sorts of influence re-

gions. Thus each planform shape calls for a different method

of approach.

It is the simplest case of a planform with purely

supersonic leading and trailing edges, the so-called simple

planform, that will be considered later in this section.

2. Fundamental Solution of a Moving Source

For U= 0 the linearized potential equation (1.28)

reduces to

+ + = -+'ytt
xx yy zz t

This is the classical wave equation for the propagation of

sound in a still medium and its fundamental solution is given

by

T (xYz Z'1 F(t- (2.28)
r 08
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where a. is the speed of sound of the undisturbed flow and

r is the radial distance from the origin, i.e., r = x2 +y2 +z2.

A solution of the linearized potential equation can

thus be readily found if we can transform it into the classi-

cal wave equation. To achieve this the following transfor-

mation, known as the Lorentz transformation, is employed.

= X, n -- 4y, = z

a (t + x)

The velocity potential of a sound source fixed with

respect to the xyz system is then found to be

A L____-M x+R
T(x,y,z,t) = A F C(t - M + R

1 R a 2

M 2 202
Go

where R = Vx 2 + (l-M2)(y2 +z 2) and 1-M 2 is known as the

Prandtl factor.

To find the constants a and 4 introduced by the

Lorentz transformation we require that the sound source should

produce constant sound flux independent of the free stream

Mach number and we get

a = ct(l-M 2 ) V M 2

Thus the velocity potential of the moving source becomes
1

if in addition the relation A -- is used,
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1 -M x + R
(x,y,z,t) = - -F(t 2a.( -Mw)

Expressing the above result in a coordinate system moving

uniformly with the source located at ( we obtain

T(x,y,z,t) = - -F = - ( (2.29)

4 TrR Ot 4 TR t 1)

where:

R = I 2222]
V(x_ 2 + (lM2) [(y-nI + (z- 2

and

TD -M (x- ) +R
c a. (1 - M. )

By comparison of expressions (2.28) and (2.29) it is seen

that the solution for a moving source can be obtained from

the solution for a stationary source by replacing the ordinary

distance r by R in the amplitude and by D in the phase. The

quantities R and D are called amplitude and phase radii

respectively.

A geometric interpretationis given in Figure 2.10.

At time t a field point Q and a source 0 moving with velocity

U. in the negative x-direction are considered. For supersonic

flow there are two spherical waves passing through point Q

at time t. These waves originated from the source at times

t-T, and t-T2 , at which times the source was located at

positions P1 and P2 shown (Figure 2.10a). For subsonic flow
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R =0

Figure 2.1a. Supersonic source

Figure 2.lb. Subsonic source
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there is one spherical wave passing through point Q that

originated at time t-T when the source was located at point

P (Figure 2.10b). From the geometry of the figure we get

(x- -U.T)2 + (y-n) 2 + (z-) 2 = 2 T2  (2.30)

Solving this equation for time T we get for subsonic flow

one real positive solution and for supersonic flow two real

positive solutions.

Physically we are looking for the effect that a dis-

turbance, originating at point (C,n,;) at some time t-T,

will have at some later time t at a point (x,y,z). In this

sense the potential is a retarded potential. For supersonic

flow the disturbance is first felt at some point (x,y,z)

after a certain time T1 has elapsed. The point (x,y,z)

penetrates the wave front of the disturbed region and be-

cause it is moving at a speed greater than that of the wave

front it emerges from the disturbed region at some later time

T 2  For subsonic flow once the point (x,y,z) penetrates the

wave front (after a certain time T has elapsed) it will remain

in the disturbed region since its speed is less than that of

the wave front. Finally the nonexistence of positive roots

of equation (2.30) should be associated with an undisturbed

region, i.e., with .T = 0.

In view of above reasoning the source solution for

supersonic flow takes the form
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Y (x,y,z,t) = -- (t-T +F(t-T

where:

D 1 M. (x- )-R
T 1  3- 2_=T 1 M

[M. (x- )+R

R (cx-_ 2 _ (M2-l) (y-r,)2 + (z-_) 2]

For a purely harmonic time dependence the source

solution takes the following final form

eiwt - x

e(x,y,z,t) = - o e cos - R (2.31)

where:

W is the frequency of oscillation

MO
W = is the compressible reduced frequency of

. (Mo-1) oscillation

R = (x-_) 2 _ (M-l) ((y-n) 2 + (Z--) 21

3. Simple Planform Solution

Consider a three dimensional wing performing a small

amplitude harmonic oscillation of circular frequency w. Let

the wing surface be very close to the xy-plane of a Cartesian

coordinate system attached to it and let the body move with

supersonic velocity U in the negative x-direction.
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The equations of the upper and lower wing surfaces

are given by

S u(x,y,t) = z -z u (X,y,t) = z -h u(x,y)e i ~ t

S Z (Xy,t) = z -z Z(x,y,t) = z -hZ (x,y)eiWt

and the linearized tangency conditions given by (1.29) become

w(x,y,O ,t) = e"t [iwh u +U U] (2.32a)

w(x,y,O -, t) = eimt [iwhz +U -h (2.32b)

Assume for simplicity that we are dealing with a

simple planform and regard each point of the wing as a pul-

sating source. Recalling definitions and terms used in

Section III.B.l this means that

a) The leading and trailing edges of the planform are

purely supersonic and the flows over the upper and lower

sides of the wing are independent.

b) Finding the fluid motion at each point of the surfaces

involves the same sort of upstream influence zone, namely, the

sort indicated by point 1 in Figure 2.9.

c) For a general point (x,y,z) the contribution of the

disturbance sources that lie on the hyperbola with end points

n and n2 given by equation (2.27) is to be considered.

In view of the above the complete solution for the

velocity potential can be found by superimposing the effects
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of all sources that lie within the upstream influence zone

(Figure 2.11). Integrating the fundamental solution for a

r.ving source, given by relation (2.31), over the hyperbola

we get

e i~t f=x-z q n)2e-ia(x-)
'1(x,y z t) =_________(__,_)

E O • 
R

Cos W= R

R d dn (2.33)

where q(E,n) is the unknown source strength.

y

z simple plonform
forecone

, (x,y,z)
U60Y

L x y

z ot, a.-zo

to) (b)

Figure 2.11. Limits of integration
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To find the source strength we note that in the pro-

cedure followed the wing was represented by a pulsating

panel embedded in an otherwise rigid xy-plane. A mathemati-

cal boundary value problem has thus been formulated for which

the normal velocity of the fluid on the panel is prescribed

by relations (2.32) and outside the panel it is zero, since

no pulsating sources exist there.

It can be shown based on physical considerations that

the source strength can be expressed in terms of the normal

velocity by the realtion

q( ,n) = 2w( ,n) = 2(iwh +U 2h)

Substitution of this value in equation (2.33) per-

mits a straightforward calculation of the velocity potential

ti.

C. COMPARISONS WITH LINEARIZED POTENTIAL FLOW THEORY

In this section we consider sweptback tapered wings with

straight supersonic leaing and trailing edges and streamwise

tips (Figure 2.12). For this planform shape equations (2.25)

become

Ii 1$i[(k 2 _k2 )/ k+1s(2.34a)
21 2

33 2

1 = 2L[ (k2-kl/ k I/ 23a

S. )/4 +k 2 +3k 2 /2 +1]/3S (2.34b)12 2 [ 2-I/ 1 k2  2

13 = 21$k 1 [(k2-k1)/3 +0.51/S (2.34c)
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Figure 2.12. Geometry of sweptbacc tapered wings

I4 Z~k [(k2-k )/4 +2k /3 +0.5]/S (2.34d)43. 2-1 2

=/Z kk +2, k = /Z= .-
2 1 1 1/ k2  x2/-

Some special cases readily follow.

For a two-dimensional flat plate

11= 0.5, 1 2 =1/3, 1 3 = 14 =0, SAB = 2

and the stability derivatives become

-C = A(0.5 -x /Z)m8  c

-C5 = B/3 -(B+-C)(x /Z)/2 +C(x/Z
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For the case of a triangular delta wing,

1 = 2/3, 12 = 0.5, 13 = 1/3, 14 = 1/4, S/Z = 1

and the stability derivatives are

-C = A(2/3 -x c/Z)

-C = (B+C)/4 - (B+3C)(xc /)/3 + C(Xc/ 2

For oscillations at small angle of attack the coeffi-

cients A, B, C appearing in equation (2.21) become

A = C = a0  B = (a 2_ )/O2 (2.35)

where = -Iand a is the two-dimensional lift curve

slope (a° = 4/s).

In this limiting case the stability derivatives given

above for a two-dimensional flat plate and a triangular delta

wing become, as expected, identical to well known formulas

based on potential flow theory [Ref. 10: pp. 52,144]. As a

result of the strip theory approximation the stability deriva-

tives of a rectangular wing are independent of its aspect

ratio and the stability boundary is always the one for a

two-dimensional wing (Ref. 10; Fig. 7.7].

Formulas (2.34) and (2.35), based on Hui's theory,

were used to calculate the stability derivatives for several

sweptback wings, with straight leading and trailing edges
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and the results were compared with results based on potential

flow theory, as given in [Ref. 11,12]. The comparisons are

shown in (Figures 2.13-2.17) and the procedure followed to

read values for the stability derivatives from [Ref. 11, 12]

is described in Appendix E. Good agreement is generally

shown.
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IV. EXTENSION OF PROFESSOR HUI'S THEORY--
UNSTEADY, NONUNIFORM UPSTREAM FLOW

Consider a uniform, spacewise and timewise, supersonic/

hypersonic flow of an inviscid, perfect gas, with constant

specific heats, past a formation of two wedges at design

condition (Figure 3.1a). The wedges are assumed to be

oscillating in pitch, with small amplitude and frequency,

in an independent fashion and the bow shocks are assumed to

be attached to both bodies at all times. The flow quantities

over the upper and lower sides of the second two-dimensional

wedge (in Regions C and D) are required. It is clear that,

depending on the difference of the semi-vertex angles of the

two wedges, either

a) both sides of the second wedge are compression sides

(Figure 3.1a) or,

b) one side of the second wedge is a compression side and

the other side is an expansion side (Figure 3.1b).2

These compression and expansion side problems are con-

sidered in subsequent subsections.

In subsections A and B the flow quantities over the com-

pression and expansion sides of an oscillating wedge will be

given. The upstream flow (in Region B), is assumed to be

iThis problem, suggested by Prof. Platzer, is of interest

in high-speed turbomachinery aerodynamics.
2
The. possibility of the second side being neither a

compression nor an-expansion side is not excluded. In this
case though region C becomesan extension of region B,in
which region the flow quantities are assumed to be known.
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oscillatory with circular frequency w and flow quantities

of the form

= u (+ U) (3.1a)

V= u C V (3.lb)

p = p (1 + YM oP) (3.1c)

= (1 + CMoR) (3.1d)

where:

u, v are the x- and y-velocity components relative
to the coordinate system shown (Figure 3.1a);

^ iktE= ee with E: a small parameter characteristic of
the deviation of the upstream flow quantities
from their average value;

k: the so-called reduced frequency defined by
k =wr

u

T: a characteristic length of the flow;

UoPop ° and M are the mean or average velocity, pressure,

density and Mach number of the upstream flow;

U,V,P and R: are time independent quantities considered to
be known functions of the non-dimensional
spatial coordinates x and y.

We will restrictthe analysis to small reduced frequencies

k and will assume that these quantities have the form

U (0) +(ik)U (1) = u(0O +(ik)(u (1)+~ ) () (3.2a)
3u 1 )x 2  y~ 3

V (0) +(ik)V (1) = v()(ik) (v~lx1~ )+Vl ( ) ( 3.)b
v3  1 x~ 2  ~ 3  )(.b
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p P 3  s~i)( 1  x- 2 y~ 3

R R 0O+(ik)R (1) = r()(k((1)x (1~~~) () (3.2d)
R = r3  (i)r 1  xr 2 y~ 3

where the coefficients u3  , U1 , ... are known constants.

It should be noted that the above forms contain as

special cases the closed form solutions found in Sections

III.A.l and III.A.2 for the flow over the upper and lower

sides of an oscillating flat plate at an arbitrary angle of

attack. Thus the results given in the following subsections

A and B hold true for upstream oscillatory fields of the

general form (3.2) and are not limited to oscillatory fields

created by oscillating flat plates/wedges. Similarly the

solution given in subsection A contains as a special case

the solution to the problem of a stationary wedge in an

oscillatory, uniform spacewise, hypersonic free stream, which

was studied in (Ref. 9]. Furthermore the solution presented

here is exact and holds for the complete supersonic/hypersonic

speed range.

In subsection C an alternate approach to the expansion

side problem is suggested. In this approach the upstream

flow is assumed to be oscillatory and, for simplicity, uni-

form spacewise. Two boundary value problems with linear

equations and boundary conditions are formulated and a closed

form solution of the problem is sought.
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A. UNSTEADY, NON-UNIFORM FLOW PAST AN OSCILLATING TWO-

DIMENSIONAL WEDGE--COMPRESSION SIDE

Consider a wedge (Body I), at design condition, osci-

llating with small amplitude and frequency in supersonic/

hypersonic flow (Figure 3.2). This flow problem was studied

in Section III.A.I and the flow field quantities B , B

B' "'" in region B (expressed relative to axes Oi'7'y) were

completely determined. Assume now that a second wedge

(Body II), located entirely in Region B, is oscillating also

with small amplitude and frequency. The flow field quanti-

ties uc' Vc' P--c' Pc' ... in Region C are required.1

To solve the problem we adopt the following procedure.

a) Express all flow field quantities relative to the

coordinate axes OiV attached to body II in its mean position.

b) Assume that both bodies I and II are stationary and

find the reference steady flow quantities in Region C.

c) Assume that body I is oscillating while body II is

kept stationary and superimpose to the steady flow quanti-

ties in region C perturbation quantities due to the oscilla-

tion of body I.

d) Assume next that body II also is oscillating and

superimpose to the aleady perturbed flow quantities in Region

C new perturbation quantities due to the oscillation of body

II.

1Flow quantities in region D can be found in a completely

analogous way (by simply letting e - e + 62 in the solution)
since the flows are assumed indepedent 

2
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The procedure described above effectively breaks down

the flow problem in hand (namely, the calculation of the

flow quantities in Region C when both wedges are oscillating)

into a sequence of three separate problems which may be solved

successively to give the final results.

The solution method, which is based on Professor Hui's

theory, is presented in Sections IV.A.2 and IV.A.3. The

final results are given in Section IV.A.4. In the following

section IV.A.l, the problem is formulated and the flow field

quantities in Region B are expressed relative to axes Ox

attached to body II in its mean position.

1. Formulation of Problem--Expressing Upstream Quantities
Relative to Coordinate System Attached to Second Body

Consider steady uniform supersonic/hypersonic flow

past the formation of the wedges described above (Figure 3.3).

Assume that the wedges have chord lengths Zi and Z2 and are

oscillating with circular frequencies w1 and w2 " Cartesian

coordinate systems O''j7' and OxF are attached to the bodies

with origins placed at the wedge apexes and axes O''I, OR

along the mean positions of the upper surfaces. Let the

steady flow quantities in Regions B and C (stationary wedges)

be given by u0 B, p 0 , POB and u , p, PO , respectively. Also

denote by t the time variable and by uB, vB, B and PB the

perturbed quantities in Region B expressed relative to axes

Ol'7'. The departure of the perturbed flow from the steady

flow in Region B is characterized by the small quantity £1

introduced below and the reduced frequency associated with

114



Sh.~ 0%4c

- IL

um ma of

it.

Fig.1.3 11llu s tr afi on o f cooar d in ae s yse m S.

I7'



the oscillation of the first wedge is defined, as usual, by
W11

= --. Similarly the reduced frequency associated with

the oscillation of the second wedge is defined by k 2 u --2--
0Non-dimensional time and lengths are introduced associated

with bodies I and II as follows,

t = /t1, t 2  = 2' x X = I 2

= ,/ 1 , y = 7/r2

We assume that the perturbed quantities in Region B

have the form

UB = u + IU) (3.3a)

VB I OBV (3.3b)B O

= + e 1YM0 P) (3.3c)PB = OB IoB

B POB ( + e1MoBR) (3.3d)

iklt
where e = Cie and

U = u(O) +(ik )(U(1)x' +ul)y' +u I )) (3.4a)

P= P(0) + (ik H)( 1)xt 3pl ,+ 1 (3.4c)
p3  1 1 pl~ 2 3l

R - r(0) + (ik )(r(1) x' +r() y' +r I ) ) (3.4d)
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with coefficients u ) , U , ... assumed to be given. We

recall that in Sections III.A.1 and III.A.2 the problems

of uniform, steady supersonic/hypersonic flow, past harmonically

oscillating wedges/flat plates were studied and the perturbed

quantities behind the shocks/expansion fans were, in both

cases, found to be of the form assumei above by relations (3.3)

and (3.4). Thus the analysis that follows does not distinguish

whether the disturbed flow field in Region B has originated

from an oscillating wedge or flat plate over its expansion

and compression sides and the appropriate coefficients and

parameters should be used to make the distinction for the

specific case considered.

Next we express the quantities given by (3.3) and

(3.4) relative to the coordinate system 0 37 attached to

body II. Parallel transformation and rotation of axes gives

for the general quantity

M = m(0) + (ikl) (m1)x' +ml)y' +m(1)

m3  1) (1 m3

where symbols M and m stand for capital and lower case sym-

bols U, V, ... and u, v, ... respectively.

M = m(0) + (ik )C' x + C_ y +C; ) (3.5)3 1 mI  2 3

where

Co 0 L C s 1+ 1l sin e1 '  So 1 B C s 1 - M Isin 81'
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d1 7
e d = ed -Ze l

C ((1) m(1)

C ( ( cos + sin 6d ) T2/T

12 2 d d2 1, = (1) -m(1)

C;( cosed sin ed) 2/

m3  m3 0I(coml +1 om I  
2 / 1

Combining relations (3.3) and (3.5) we express the perturbed

quantities PB and PB relative to axes 0 3xj in the following

form

P = [1Cpo+ (ikl)(C X+C Y+C ]  (3.6a)
B 0B O 1 1 P2  P3
=B PoB {i + i (Cro +(ik 1)(C rX+Cr2Y+Cr) (3.6b)

with

C = YM 0  p(0 Cr = M r
p 0 OB 0 MOB 3

C = y MoC' j , C = M Cr (j = 1,2,3)
Pj=YMB j r.i O r

To find the perturbed velocity components UB' VB we take

their components along the new axes and add them to get

3  [Cos ed I(U cosed +V sinel

v B = uB[-sin d +e (-U sin Gd +V cos ad)]
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and finally using relations (3.5) we have

UB = uoB cs d + El [Cu +(ik)(CuX+CY+C) ]} (3.6c)

vB = U {-sind +E [C +(ik) (C x+C Y+C ]} (3.6d)
B 0 1 "2 V 3

where:

C = u( 0 ) cosd +v(0)sin d  C( -u 0) nd (0) cosedU3 d 3 indr Cv 3 du sin d

C = C' cose +C' sin8d (j = 1,2,3)u J

.= ' sinOd+C' cos8d (j - 1,2,3)Cv -C U
J J

Relations (3.6) give the complete set of flow quantities in

Region B expressed relative to coordinate system Oy.

2. Perturbed Equations of Motion

In this section we derive the perturbed equations of

motion in Region C, when both wedges are oscillating (Figure

3.2). To find the form of the perturbed quantities in this

region, relative to axes 0 xy, we proceed as follows.

First we assume that both bodies are stationary and

denote the (reference) steady flow quantities in Region C

by uO, PO, PO, M (Figure 3.4a). Obviously v0 - 0 for the

coordinate system chosen.

Next we assume that body I is oscillating while

body II is kept stationary. Due to the oscillation of body

I we superimpose to the field quantities perturbations of

the form (Figure 3.4b),
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^ iklt 1
EU = e uU = u1uoU (3.7a)

^ ^ iklt1
E = E1e uV 1  = 1 uoVI (3.7b)

^ ^ i k l t l po 1 M P

E p = Ee POyM0  = 1Po-YMP (3.7c)

^' ^ ik lt 1
E1Pl C e poMoR = PoMoR1 (3.7d)

Finally we assume that both bodies are oscillating.

Due to the oscillation of body II we superimpose to the field

quantities perturbations of the form (Figure 3.4c)

^ ^' ik2t2
2U = E 2e UU 2  = s2UU 2  (3.8a)

ik2t 2

2v = 2e  uo V2 £2uoV 2  (3.8b)

^ A ik2t2
E2P1= e2e POYMoP2  = e2PoYMoP2  (3.8c)

Sik2t 2
E2Pi= '2e po MR = 2p0MoR2  (3.8d)

The flow field quantities in Region C for the last case2 2
become (terms of order ClC2 , 2i ' 2 are neglected)

u = U0 U + e U + C2 U2) (3.9a)

V = U 0 EV1 + 2V2 )  (3.9b)

= Po [1 + YMo (£1 P1 +C 2P2 )  (3.9c)
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P = p[1 + M(CR 1 +e2 R2 )] (3.9d)

where the quantities Ul, U2 , V 1 1 ... are functions of the

non-dimensional variables x and y. For small k and k2

we may expand these quantities as power series in (ik) of

the general form

.() + (ik )X ( I )  + ... (j = 1,2) (3.10)

with X denoting U, V, P and R.

To simplify we assume that the characteristic lengths

T1 and T2 are equal and we put (3.9) into the governing

equations of motion (2.1). Using (3.10) and equating the

terms of the same order of (ik) in each of the resulting

equations we obtain

S(0) +eu(0) = (o) + (p
1 lx +2 2x l~1x 2 2x o (3.1a)

eV( 0 ) +E V ( 0 )  =- (E P ( 0 ) + C P (0))/M (3.11b)
lx +2 2x = I ly 2 2y 0

C lx - ) + E() - R 0 ) = 0 (3.11c)
1 lx lx 2 2x 2x

Cl"V(0) +V(0) +M R(0) (U(0) +V(0) +M (0)=0 (3.11d)1ilx ly 0 lx ) +  2 2x 2y 0R2x d

E(ik)(oBU(0)+u (1))+E ( i k ) u  (0) (0)

)u 1 0lx 2( 2) 0  U2x

= -Uo[C(iki)Pk2)(1)]/Moix / (3.12a)
ol 1ilx ~2 2 2x 
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(ik) (UoV(0)+u V(1))+E 2k2)uo(V(0)+V(1)
1 0 B(ik)x (V2  2x

= [el(ikl)P(O)+e (ik )P(1) J/M (3.12b)
01 1ly 2 22y 0

(ik) Lu ((O) (p(1)_R())
SB 1 R )+U lx lx

+ e2(ik2)uo(P(0)-R(0 )+p(1)-R~1 ) = 0 (3.12c)
2 2o 22 2x 2x

() (1)+ (1)+M R(1)
1l1kl B 0)Uo( lx ly o lx

+ e (ik2)Uo(MoR 0 )+U(1) (1)+M R(I ) - 0 (3.12d)
220 o2 U2x 2y 0 2x

Equations (3.11 and (3.12) are the zeroth and first-order

equations for our problem. For the case of a single oscillating

body they reduce to equations (2.9, 2.10) given in Section

III.A.l, by letting e = 0, U1 = V 1 = P1 = R1 = 0 (body I

considered missing) and dropping subscripts B and2 in re-

sulting expressions.

To solve for the sixteen unknowns contained in

Systems (3.11) and (3.12) we may proceed in two steps. We

may first find the eight unknowns associated with the oscilla-
1.

tion of body 1. To do this we will assume that body II is

not oscillating (c2 = 0) and solve successively the above

systems of equations subject to appropriately formulated

boundary conditions for this case. Next, we will find the

eight unknowns associated with the oscillation of body 11.

1Unknowns with subscript 1.
2Unknowns with subscript 2.
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To do this we will assume that body II is oscillating while

body I is present but stationary (e1  0) and solve successively

the resulting systems of equations subject to boundary con-

ditions appropriate for this case. The second problem has

been treated ia Section II.A and we will not repeat the solu-

tion for this case. We note though that the problem should

be appropriately reformulated to account for the different

direction and magnitude of the approaching steady flow

velocity as indicated by the ratio of steady velocities

u 0/U 0  appearing in equations (3.12).

3. Boundary Conditions

For both wedges oscillating, let the equation of the

surface of body II be given by (Figures 3.4b, 3.4c),

S = -y + C2 (x- h2 Cos e2 ) = 0

and the equation of the shock attached to body II be given

by (Figures 3, 4) ,

G = -y +- x tan4 0I +e 1Q 1(X) + C 2Qx 0

where Q 1(x) and Q 2(x) are unknown quantities associated with

the oscillations of bodies I and II respectively and are to

be found as part of the solution.

We will formulate the boundary conditions for the

case of stationary wedge II (e = 0).

The flow tangency condition (2.2) with V = u 0 { +61 1.

LV1  gives
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V(0) 0 At y = 0 (3.13a)1

V I  = 0 At y = 0 (3.13b)

To find the boundary conditions across the shock we

use the Rankine-Hugoniot conditions. The procedure is given

in Appendix D and the resulting zeroth and first-order condi-

tions, after linearization and use of equation (3.10), have

the following general form

y(0)= K Q.(0) + Ky At y = x tan1 (3.14a)
x

y( I ) = K0x)+ Ky +Ky KxQ{ i +K Q( 0 )
Y KYxx x KYyy y KY+Yx Q1 Y0 Q

At y =x tan (3.14b)

where Y stands for U, V, P and R and the coefficients Ky,

Ky , K ,... are known constants (functions of geometry
x xx

and steady flow quantities) given in Appendix D.

4. Solution

Two boundary value problems have been set up and

will be solved successively. The zeroth-order equations 13.11)

with £2 = 0 and boundary conditions (3.13a) and (3.14a) con-

stitute the first problem, which will give the steady flow

quantities behind the shock, for the case of stationary

wedges in uniform, steady supersonic/hypersonic flow. The

first-order equations (3.12) with e2 = 0 and boundary condi-

tions (3.13b) and (3.14b) constitute the second problem. Since
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both problems are linear we assume that their solutions

are linear combinations of the non-dimensional coordinates x

and y.

For the first problem we assume a solution of the

form

U(0 ) = U(0 )x + u(0)y + u(0)

S ( 0 ) = r(0)x + r(0)y + r(0)

1 1 2 3

p(0) = p(0)x + (0))y + P31 p1  ~ 2  y~ 3

Q(O) - (0) (0) (0

Q (0) =q(0)x + q(0)

1 q1  x 2

Substitution of these values in the zeroth order equations

and boundary conditions gives the following solution.

U = u 0 ) = q (3.15a)

V = 0 (3.15b)

R()= r( 0 ) = KRx q() (3.15c)

P(O) = (0) K q (3.15d)
1 p3  P

K
(0) = (0) - - K (3.15e)

01 q1
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For the second problem we assume a solution of the

form

() I (1)x + u(1)y + u

S ( ) = V()x + r y + ( I )

Substitution in the first-order equations and boundary con-

ditions gives the solution

U(1)= u(1)x + u(1) y + ) (3.16a)

I()=(1y (3.16b)

I)= r (1)x + rl) y +r (3.16c)

1 3

p(1)_ p(1)x 2 (1) 3.d
Q1  p 1  x 2x+p3

with

v I )  = (Kx I + Wv)/tan c(

~() = Kpxq +

1 1xl 2 P
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u(l) (P(1) /M+ K 0 u

o B  o

1 0 3 0B0

r (-u + Kxq I + W)/tan *

q)= - +Kx

r1 = c() + ((O) - ro-i)/

(l1) _(-r(
1 ) + K q + W ) /tan2 1 Rxl R

-~l K q(1) K
3 + 2 R

q(1) = K/~

u (M2 1
q= 2ql B(0() p(0)M ( 0 -1

1 ~u 3  - 3  0 ) M 0
WV (M2_1)Kp KVX

tan M tan0

WY K + Ky tan + K 0q )=Kxx yy 0Yq

with Y standing for U, V, P and R.

B. UNSTEADY NON-UNIFORM FLOW PAST AN OSCILLATING TWO-

DIMENSIONAL WEDGE--EXPANSION SIDE

Consider a wedge (Body I), at design condition, oscillating

with small amplitude and frequency, in supersonic/hypersonic,

steady, uniform flow (Figure 3.5). This flow problem was

studied in Section III.A.I and the flow field quantities in
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Region B, expressed relative to axes O'xy'l were completely

determined. Assume now that a second wedge (Body II),

located entirely in Region B, is also oscillating with

small amplitude and frequency. Let the semi-vertex angles

of the wedges be T1and If respectively and assume that their

difference T 2 _T 1 is negative. In this case the upper side

of the second wedge (Region D) becomes an expansion side and

the exact solution given in the previous subsection does not

apply.

To solve the problem we adopt, as before, the following

procedure.

a) We assume that both bodies are stationary and find

the reference flow quantities inside the expansion fan

(Region C) and over the upper surface of the wedge (Region

D).

b) We assume that body I is oscillating, while body II

is kept stationary and superimpose to the steady flow quan-

tities in Regions C and D perturbation quantities due to the

oscillation of body I.

c) We finally assume that body II is also oscillating and

superimpose to the already perturbed flow quantities in

Region C new perturbation quantities due to the oscillation

of body II.1 The problem is thus solved in three successive

1Disturbances due to the oscillation of body II propagate
along the characteristics and are not expected to influence
Region C except in the neighborhood of line OC.

132



steps. In what follows we will restrict the analysis to

the case of a stationary wedge in oscillatory flow. The

solution can be extended to the case of an oscillating wedge

by following the procedure described in Section III.A.2.

In subsections 1 and 2 the problem is formulated and the

method of solution is presented. This method calculates the

flow quantities in the expansion fan, in a sweeping fashion

from Region B to Region D, along rays 9 = constant, with

e increasing in small steps from 6(M 0) to e(M) (Figure 3.6).

The procedure involves the repeated application of two basic

steps and is described in subsection 3. The solution is

approximate and becomes more exact in the limit as the number

of iterations increases.

1. Formulation of Problem--Expressing Upstream Quantities
Relative to Coordinate System Attached to Second Body

Consider steady, uniform, supersonic/hypersonic flow

past the formation of the wedges described above (Figures,

3.5, 3.6). Assume that the wedges have chord lengths Z 1 and

z2 and are oscillating with cir.cular frequencies w1 and w2 "

Cartesian coordinate systems O'I'' and 0 3iy are attached to

the bodies with origins placed at the wedge apexes and axes

0'x'0x along the mean positions of the upper surfaces. Let

the steady flow quantities in Region B be given, relative

to axes O'3E'7', by u0 , B O, p B, M ... and in Region D,

relative to axes O7y, by u, p, p, M, .... Let also the

steady quantities along a ray 0 = constant in the Prandtl-

Meyer expansion fan be given, relative to axes 0 xy, by
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Ue@, V, Pe, Pe, me ... where

u = Vr cos (U-e) + Ve sin (U-e)

v@ = Vr sin (F-6) -V 9 cos (F-e)

where the angle r and the r- and 6- velocity components

Vr and V were defined in Section II.A.4.b.

We assume, as in Section IV.A.1, that the perturbed

quantities in Region B have the form given by equations (3.3)

and (3.4) and note as before that this form contains as

special cases the form of the perturbed quantities behind

oscillating flat plates/wedges. To express the quantities

given by (3.3) and (3.4) relative to the coordinate system

O xy attached to body II we use relations (3.6) with 9d = 2- i"

2. Method of Solution

Assume that the change in flow direction over the

corner (Figure 3.7a) is obtained in n steps (Figure 3.7b).

Assume that the step changes in flow direction are all equal,

i.e.,

a = a2 - ... = n = n' a = 2

and also note that each of the line segments DkDk+l (k = 1,2,

...,n-l) extends to infinity. In the second case the single

expansion fan has been replaced by n smaller expansion fans

and the two problems are, physically, completely equivalent.
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Next we assume that the change in flow direction over

the step corners is achieved through expansion discontirui-

ties, similar in nature to hypothetical expansion shocks,

which we will call expansion fronts or, simply, fronts.

Suitably spaced lines OBI, OB2, ..., OB n in (Figure 3.7a)

correspond to the mean positions of the fronts FI , F2 ,.

Fn emanating from corners DI , D2, ..., Dn respectively.

These lines divide Region C in subregions B0 , B1, B2, ... ,

Bnl Bn D. The first subregion B is separated from
n 0

Region B by line OBo = OB and from Region B1 by front F1 .

Subregions Bk (k = 1,2,...,n-l) correspond to line segments

DkDk+l and are separated from their adjacent subregions from

the left by fronts Fk and from the right by fronts Fk+l* The

last subregion Bn D corresponds to the line segment

D D = D D (actual upper surface of wedge) and is separatedn n-il -n

from Region C by front Fn. The flow quantities in this last

subregion are required. We intend to solve for the unknown

quantities in this region by first obtaining the unknown

quantities in Regions Bi , B2, ..., Bnl successively.

We observe that the original flow problem has been

replaced by a set of n identical flow problems each of which

involves the same step change in the direction of flow. We

may further observe that the assumption of "jump" step changes

in the direction of flow, via the so-called fronts, is simi-

lar to the "jump" step changes in the direction of flow via

ordinary compression shocks. Thus the two problems shown in

(Figures 3.8a and 3.8b) are mathematically identical if the
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commron term discontinuity is used to denote "jump" changes

in flow direction and quantities across it.

In Section IV.A the solution to the flow problem

shown in (Figure 3.8a) was obtained. It was assumed there

that the approaching flow was oscillatory of the form given

by equations (3.3) and (3.4) and the flow quantities in Region

Bwere found relative to the coordinate system D kxkyk. We

will see that the approaching flow for the dual problem shown

in (Figure 3.8b) is of the same form and thus the solution

given in Section IV.A.4 applies to the dual problem also,

provided that the appropriate geometrical data and steady

flow quantities are introduced for this case. The quantities

found in Region Bk will be expressed relative to the next

coordinate system D k+1xk+1yk+1 and will be used as input

quantities to an identical problem to give the solution for

the flow quantities in the next Region B~k+l. The procedure

can be repeated till the required quantities in the last

region Dn D are found.

Physically the assumption of a "jump" expansion dis-

continuity is not accepted since such a finite discontinuity

would lead, as explained in Section II.A.3.b to a decrease

in entropy. The procedure described above, however, should*

give the exact solution in the limit, as the number of step

changes in angle is increased.

3. Solution Procedure

Consider an arbitrary Region B k (k - 1,2,...,n) behind

front F k (Figures 3,8b, 3.9). Assume that i-th bodies are

139



8. ,-

A

R E GIO0N 8 ~(FAN ANGLE)

P., PnB

Octc
" F,

It8

In

Figure 3.9. Illustration of geometrical data

140



stationary and let the reference steady flow quantities in

this region be uk, vk , Pk' Pk' Mk .... These quantities

can be found from the Prandtl-Meyer relations given in

Section II.A.4.b. Expressed relative to coordinate system

OXkYk these quantities are

Pk [E(M /E(Mk) /(Y-1) (3.17a)

Pk p [E(M )/E(Mk)]i/(7-1 (3.17b)
B B

= V COS + V sin. k (3.17c)
vk = vrk sin k Cos k (3.17d)

-ek

Mk  = (tan Xek/A) 2 +1]0.5 (3.17e)

where poB ,Po, MOB, ... are the reference steady flow

quantities in Region B and

(Y-105 2

(+-l) E(M) 1 +(y-l)M 2 /2

ek = + , e = 6(Mo) = tan-1 X(M2  1)0.5]/X

r-e= (n-k), a = If
k ' k n 1-2

V = c sin Xek, v = X c cos Xek

c 0 [i + 2 05

B  (-l)M2
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Assume that body I starts oscillating and denote the

perturbed quantities in Region Bk expressed relative to

coordinate system OXkYk by

1= Uk( + (3.18a)

Vk = u C1 Vlk) (3.18b)

Pk Pk 1  + ClyMkp ) (3.18c)

k Pk (1 + E AN) i8d)

where the unknown time-independent quantities Uk , Vk, Pi,

Ri may be expressed, for small amplitude and frequency of

oscillations, as power series in (ik1 ) of the form
1

Yk = yk(0) + (ikI )yk(1) +

with Y' standing for U', V', P', R'.

Assume that, with body I oscillating, the equation

of the front Fk is given by

(Fk) = Yk + Xk tan k +lQk(xk) = 0 (3.19)

where

1kI is the reduced frequency parameter associated with
the osaillations of body I and should not be confused with
the integer k.

142

* 7A



= (r-6 -a) + (a-6)k/n, r = c ++P(M

k-0 2 0 -1

P(Mo) = tan- [X(M 2-1) 05]/- tan- (M2B1)0.5

Assume that the approaching flow from Region Bk_ 1

has the following form, with flow quantities expressed rela-

tive to system OXkyk,

Ui- =Uk-l(Cos 8d + E Uk-1) (3.20a)

V-ki = u (-sin ad + CiVk~l) (3.20b)
'k-l uk-i -

-_1 = Pk-( 1 + ElRkl) (3.20c)

Pk-i = Pk-l ( 1 + £1Pk-1) (3.20d)

where 6d =(T2-T1)/n and the time independent quantities

Uk-1' Vk-l' R k-l and Pk-i are assumed to be known quantities

of the form

Yk-l = Cy + (ikl)(C1 +CY Yk+CY (3.21)

with Y standing for U, V, R and P.

We observe that the problem formulated above for the

arbitrary Region Bk is mathematically equivalent to the

problem considered in Section IV.A since the approaching

flow has the same form, the change in flow quantities occurs

through a discontinuity that satisfies the same equation and

therefore the same Rankine-Hugoniot boundary conditions, the
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unknown perturbed flow quantities along the surface have the

same form and should satisfy the same flow tangency boundary

condition and the same governing equations of motion. We

may therefore borrow from Section IV.A.4 the solution for our

problem as given by equations (3.15) and (3.16). As a final

step we should show that this solution expressed relative to

the coordinate system OXk+1Yk+1 (associated with the problem

that is to be considered next in order to find the flow quan-

tities in the adjacent Region Bk+l) is of the form assumed

by relations (3.20) and (3.21). We see that this is indeed

the case since the solution given by equations (3.22) below

is expressed relative to the rotated system of axes Ox

by equations (3.23).

The solution given by equations (3.9), (3.15) and

(3.16) is

= Uk{1 + E1[U (0) + (ik )U (1)]} (3.22a)vk ,( (3 22b)

= U NP ( 0 ) + (ik )V ( 1) (3.22b)

-- Pk {1 + C 05OP + Ui 1 )P (1} (3.22c)

Pk  = Pk(0) + (ik1 )Ri(
1 )]} (3.22d)

with

q (0) ( 0 )  Vk (0) 0(0 r3(0

Ok u=3u , v (0) 0)
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q~ (0) = POf q M + M +M

k 3 ' k1 k '2 Yk 3 f

v kk' VRj (1) r(1 X +r 1 ) +r( 0

()(1) (1)
k Pi Xk+P 3

The same solution expressed relative to the coordinate axes

OXk+lYk+l is

= Uk{CSc d +e [Cu +(iki)(Cu xk l+Cu Yk+l+Cu } (3.23a)

uk u 1 U ~ 2 Yk1u3

Vk = k {-sined E 1 [Cvo +(ikl) (CvlxU+l+CV2Yk+l+CV) ] (3.23b)

= P]~ l +El[Co+(ikl)(CpXk+ +CpYk++Cp)]} (3.23c)

= pk{1 +e1 [Cr 4(ik )(C x l+Cr 2kl+C ]} (3.23d)
Pk k 1ro I rI k~l 2 Y+1 r

with

c = Cos (0) = coB edU3 I)

u ,d3  u3  d '

od(cOs dU( sin (1)- sin 8d(1)

C = Cos d(-sin edUl1) + cos 
8dU() + sin 6dV2)

C = -sin 6dU) , Cv3 = -sin eduM

C =sin 8d [Cos (1 (1)si M osaV
cdul - si du 2  OB 2dv
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c2 sin2eduM s 8 8 dCo ) , + Cose V

= (0), CM ()

PO YMkP3  P3 YkP3'~

C =M k ( c Os ed(1) -sindr(1)),

C = Mk(c s edl )  + sin edr(l))

d Cr 1 )/n

We summarize the procedure that should be followed

to find the flow field quantities in Region Bn  D below.

(a) Assume that the flow field quantities in Region B have,

relative to axes 0'3P7' attached to body I, the form given

by relations (3.3) and (3.4).

(b) Express these quantities relative to axes Ox lY , as

described in Section IV.A.1, by relations of the form given

by equations (3.6), with e d = (T 2- T1)/n.

(c) Use these quantities as upstream quantities for the

first problem considered and find the perturbed quantities

in Region Ba , as described in Section IV.A.4. The solution

has the form given by equations (3.22) with k = 1 and the

reference steady flow quantities involved are given by equa-

tions (3.17) with k d.
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(d) Express the solution relative to coordinate system

Ox 2Y2, by using equations (3.23) with ed= ( F1)n

(e) Repeat step (c) to find perturbed quantities in Region

B 2 and repeat step (d) to express them relative to coordinate

axes Ox 3y3 *

(f) Repeat step (e) till the flow quantities in Region

B nare found. These quantities are the required quantities

in Region D.

The procedure given is well suited for computer

applications. The program can be set up in a fairly easy

way using the formulas presented and the number of iterations

can be increased to the accuracy desired.

C. AN ALTERNATE APPROACH TO THE EXPANSION SIDE PROBLEM

In the last section the flow field quantities over the-

expansion side of the wedge were found by a series of itera-

tive calculations. The same technique can give the flow

quantities at any point (r,O) in the expansion fan region

(Figure 3.10).

In this section another approach for finding the flow

quantities in the exdsion fan is suggested. The approach

consists, as before, of the following steps.

a) Expressing the governing equations of motion in the

expansion fan region in polar coordinates.

b) Perturbing the equations of motion.

c) Forming systems of equations that are to be solved

subject to appropriately formulated boundary conditions.
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Figure 3.10. Illustration of polar coordinate iystem
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1. Governing Equations of Motion

The governing equations of motion were derived in

Section II.A.2. They are restated below.

Dp- + p7 = 0

DV +2 7 =
P

D 
0

Dt ^Y

In polar coordinates with

D 1 "1

VA = (rA +

VD 3 V
() ()+ Vr  r + --

~~r )+V _ re

these equations become

r Cp+FF(Vr) + P0 1 + F(Vr +(;Toe e + eve 0 (3.24a)

r)E+(Vr)Cr + Vee t(r)e- (e)Ii = -(r 3.24b)

{[(Ve)E+ + ] + ( (Ve) + ( r) 1  = + re (3.24c)

-{(p+ (V r~- + +([!t + rV Fr]

+ ( )e) = 0 (3.24d)
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where p p, Vr and V are the density, pressure and the r-

and 9-components of velocity relative to the polar coordinate

system chosen (Figure 3.10). Bars over these quantities were

introduced to indicate their unsteady nature. Quantities

and r respresent time and radial distance respectively and

bars were introduced to indicate that these quantities are

dimensional quantities. Subscripts E, r and 9 denote partial

differentiation.

We assume that the approaching free stream is oscilla-

tory. Let E be a small parameter characteristic of the departure

of the free stream from its mean (average) constant-state

flow. We also denote by p, p, Vr and V the reference steady

flow quantities (when e = 0) in the Prandtl-Meyer expansion

fan along a ray 9 = constant. We may express the flow quan-

tities in the expansion fan as power series of e in the

following form

p = p + Ep + ... (3.25a)

p = p + Cp + ... (3.25b)

V = V +V + ... (3.25c)r r r

V = V8 + eVe + "'" (3.25d)

where the reference steady flow quantities p, p, Vr and V9

may be found from relations given in Section II.A.4.b.
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We define non-dimensional quantities as follows.

t = Ul /T, r = 'Ej (3.26)

where 4 is a characteristic length taken equal to one unit

of length and U. is the average velocity of the approaching

free stream.

We substitute (3.25) in the governing equations of

motion (3.24) and retain only the zeroth and first-order

terms in e. Equating like order terms in each equation and

using (3.26) we obtain the following two systems of equations.

P(V6)e + Pa(V 6 ) + p (Vr ) = 0 (3.26a)

p(Ve)[(Vr)e - (V6)] 0 (3.26b)

P (Ve) [(Vr ) + (V) 8 ] = -pe (3.26c)

Y P Pe P pe (3.26d)

r[u~p t+p(vr) r+r (Vr) ]+P(Ve)e +p(Ve) +Q 06 (V9)

+ P(Vr)+P(Vr)+pe(V) 0 (3.27a)

rp(U (Vr) t+Vr (V r)]+p(Ve)(Vr) oX-e) ( +p(ve)[(Vr)e

- (Ve) +pV6(V r) 6 -(v) = -rpr (3.27b)
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rp[U.(V )t +(V 6 )r(Vr)]+P(Ve)((V6)e+(Vr)]

+ P(Ve)[(Vr)+(Ve)e]+Q(Ve)[(Vr)+(Ve)o ] = -Pe (3.27c)

r{p(.u pt+pr (vr) I-Y pu pt++r (Vr)-Y]

+ (V6)pp+Ppe-Y(pPO+p)] = 0 (3.27d)

Equations (3.26) constitute the governing equations

of motion in the Prandtl-Meyer expansion fan for steady flow.

They are satisfied by the Prandtl-Meyer relations given in

Section II.A.4.b if the additional relation (V9) = a (a

direct consequenceof the fact that in the expansion fan the

discontinuities are infinitely weak or Mach waves) is used,

as can be seen by direct substitution. Equations (3.27) con-

stitute the perturbation equations for our problem.

We assume that the unsteady parts of the flow quanti-

ties are of the following form.

p = pyMPe i k t  (3.28a)

V0  = ( 9e
ikt (3.28b)

Vr = (Vr)Ve (3.28d)

1The real parts of the complex expressions are considered

only.
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where P, R, U and Y are time-independent quantities to be

found and k is the so-called reduced frequency defined by

k = - with w the circular frequency of the oscillatoryU00

upstream flow. We also assume that the amplitude and fre-

quency of oscillations are small and express the time-indepn-

dent quantities P, R, U and Y as power series in (ik) of

the form

p = p(0) + (ik)P(1) + ... (3.29a)

R = R( 0 ) + (ik)R (I ) + ... (3.29b)

U = U( 0 ) + (ik)U (1) + (3.29c)

y = y(0) + (ik)Y(1) + ... (3.29d)

We substitute equations (3.29) in equations (3.28)

and the resulting expressions in the perturbation equations

(3.27). Retaining terms of zeroth and first-order only and

equating like order terms in each of the equations we obtain

the following two systems of equations.

Zeroth order equations

pM[(Vr)+(V) IRs ( 0 ) + PM[(V )R(0)+r(V )R (0 ) ]reee r r

- (U(0) - (0)] V (0) (0)+ (V )epU +PUe ]+p(r )Y +rY r1 =0 (3.30a)
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()M[(V)- (R0 ) (0)+- (0[) )(P~v (V )IR +rpy4P r P~e[V 9-( r9

eP~ 2O+ P(V) fMv)Y 6 )+r(V )y (0)] 0 (3.30b)

P( M( (V) 6 R (0) +pYMP(0 +p(V ((Vr)+(v ) ]U~0

+P(v9 )2u(0O +rp(Vr) (V )U 4
0)+( )(V )Y(O) 0 (3.30c)

- -(0) -- - ()- () (0

-(V)MR -ppy(Ve)Re (0) -)Rr I

+ (V 6) (Ppeyppelu (0 0 (3,30d)

First order equations

+ ~~ ~ 1 (1)(1 - R +

6()-[pU6' +Ue ]+P(V ) (Y 4-rY r

-RpU R(3.31a)

(1))
p(V)M(Vr~~(V)IR~' +rpymr (1 +(ve ((vr

(V)U1)-( 8 2 (1)-

+r(V )Y(1)] =-rp(V )U.YO (3.31b)
r r r

P(ve)mU~vr)4*(Ve)e ]R (1 pybjP~ 6 +p(v [(Vr)

- (1) 2 (1)
s(6)0 1U +P(V 6) U96 +rp(V r)(V 9 ) r

+p(V r)(Ve0)y ) -rpU,,(V 6 )( (3.31c)
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2. Boundary Conditions

The proper boundary conditions to be prescribed are

found by realizing that the problem is an initial value problem,

i.e., the upstream conditions completely determine the solu-

tion and the flow matching conditions must be imposed at a posi-

tion which differs by O() from that of OB and hence must be

determined as part of the solution.

3. Solution

Because of time limitations and unsuccessful choice of

test solutions we have not been able to find a solution.

We should note that once a solution is found (either

in closed form or by use of a computer program) the flow quan-

tities on the upper surface of the wedge (Region D) can be

obtained by using the method described in Section III.A.2. The

same method may be emp .yed to extend the solution of the prob-

lem to the case of an oscillating wedge in oscillatory flow,

since in the last cas'i, the oscillations of the body are not

expected to influence the flow field in the expansion fan

region, except in the neighborhood of line OC.
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V. SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK

A. SUMMARY

The perturbation method proposed by Professor Hui, as

applied to a two-dimensional, oscillating flat plate, with

attached shock wave, at an arbitrary angle of attack, in a

steady, inviscid supersonic/hypersonic flow, has been des-

cribed in detail. For periodic oscillations of small ampli-

tude and frequency, the first-order closed form solutions for

the flow field quantities in the disturbed regions, over

both sides of the two-dimensional flat plate, have been given.

The "in-pitch" stability derivatives of the oscillating flat

plate can then be predicted and a criterion for the neutral

damping boundary can be obtained. The flat plate results

may be naturally extended to include bodies of slightly more

complicated shapes and this was done by Hui for Caret wings

and wedges [Ref. 7]. Utilizing strip theory these results

may also be extended to three-dimensional bodies of a similar

cross section and this case was described in Section III for

a flat three-dimensional wing of arbitrary planform [Ref. 51.

The "in-pitch" stability was studied and the agreement with

potential flow theory results (for zero angle of attack)

was found to be good.

The extension of the above results to bodies with cross

sections composed of curved segments or straight segments

forming downstream corners, is possible (Figures 4.1 a,b).
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In Section IV the perturbation method proposed by Hui

was extended to include the effects of periodically oscillating

upstream flow over both sides of a stationary flat plate.

The method may be readily extended to include oscillations

of the plate. The assumed form of upstream flow oscillations

includes as special cases the form of induced oscillations

in the flow field by the oscillating flat plate considered

before in steady supersonic/hypersonic flow. The solution

over the compression side is given in closed form, while

that over the expansion side is given as a series of iterative

calculations.

B. RECOMMENDATIONS FOR FUTURE WORK

The upstream oscillatory flow solutions may be combined

with the upstream steady flow solutions to study three

general problems.

First, the induced flow field by two-dimensional bodies,

of any cross section, at arbitrary angles of attack and

attached shock waves, in steady flow. For this problem the

flow field can be obtained in steps, from leading to trailing

edge, over the straight line cross section segments (Figure

4.1a). Curved segments could also be approximated by a

series of straight line segments (Figure 4.1b).

Second, the induced flow field by a formation of bodies

with the exception of

i) Regions behind crossing shocks,

ii) Expansion fan overlapping regions,

iii) Mixed regions of above.
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Third, the induced flow field behind three-dimensional

bodies of any cross section, utilizing the strip theory

approximation.

The dynamic stability, in pitch, of the bodies involved

in each of the above general problems, might be studied.

A closed form solution for the expansion fan problem

formulated in Section IV.C might be sought. Similarly

a closed form solution might be sought for the more general

expansion side problem considered in Section IV.B. This

solution might possibly be found by letting the step angle

e d (representing the step change in flow direction) tend

to zero in the basic formulas that are iteratively used.
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APPENDIX A

PROCEDURE FOR SOLVING SHOCK BOUNDARY CONDITIONS

Let Z = T gradG

Xl [_G , Vi 1 gradG]

X2  2[G + 2 gradG]

where is the characteristic length chosen, G = 0 is the

equation of the shock and the subscripts . and 2 denote

quantities before and after the shock respectively.

Equations (2.3a-2.3c) are written with 4 = 7---

p1X1  = p2X2  (A.1)

2 + pZ2 2 2 (A.2)
p1X1  2 p2 2 + P2z
IX2 + =l z2 X2 + 2 z2 (A.3)

2 P1  2 P2  2

Consider a harmonic oscillation with frequency w and maximum

angular deviation of the unsteady flow from the steady reference

flow E.
flov~.ikt
Let e = .e where

t (non-dimensional time) = U0

k (reduced frequency) =
u
o
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t: dimensional time

u reference velocity (in steady flow)
0!

For the general case assume that the approaching flow is also

unsteady and let

X = X + x = X + EX Z = ZII +Z
1 11 12 2 21 22 11 1l2

P1  = Pil + cP1 2  P2 =P21 + EP22

pI  = P11 + EP12 2  = P21 + ep22

We substitute these values in (A.l-A.3) and retain only zeroth

and first order terms in e. Equating zeroth and first order

terms we get the following two systems of equations respectively.

P 2 1 X2 1  = Pl X1 1  
(A.l.l)

P21[P21+Pil (i_) ] = P1[ P l l+ P 2 1 (l-u)] (A.2.1)

2 (.-) 2 X2p2tXxZ 1] = 1- 11 (A.3.1)P21 [Plll+ PllI'l 1pl1

21 22= PlX 1 2 + P12X11 - P22X21  (A..2)

P 2 2 (p 2 1 -kpll) = P2(PlI+kP21)-P22 11lk+P21)+Pl2 (l-kP21)

(A.2.2)
222(I( 1 P 2p11 X1 1 Xl2[(AI-, plf P2 1 ]

2 1(-)l- -PI(A.3.2)

12 XI [2(l)P 1 1- 2 1 ]IP 2 1 [Pll1 2 +PI 2ZII ]

with k = P-1 = (y+l)/(Y-l).
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Equations (A.1.l-A.3.1) give the unknown flow quantities

behind the discontinuity, for the steady reference flow (in

terms of known flow quantities before the discontinuity) and

are also used to simplify equations (A.I.2-A.3.2) even further.

These quantities will then be used in simplified equations

(A.l.2-A.3.2) to give the unknown flow quantities behind the

discontinuity for the unsteady flow.

To complete the system of boundary conditions across the

shock we now consider equation (2.3d) which expresses the

conservation of tangential momentum. This equation is

equivalent to

ST =-- V T (A.4)1 2

where Y is a tangent to the surface vector, such that

VG.T = 0.

For a surface G = xtano-y+eQ(x) = Owe will choose

this vector to be T= {l,tan *+cQ'}.

162



APPENDIX B

OSCILLATING WEDGE IN STEADY UNIFORM FLOW

For this case which was considered in Section 
III.A.I

(Figure 2.la),

v = = U {cos e,-sin 8}

V2  = { 2 ? 2 } = U + CU, EV}

G = x tan -y + Q(x)

Then

VG = l{tan +EQ,1} ,  = {l,tan +eQ x }

z
2 22

Z2  + -Z12 1 + tan+ ][2tan Q]

.sin cs Q+

X = Xl + cX = U - +Q + -(ik)Q] }
3. 11 12 xcs x .

X2  X21 + ex22 = u otan 0 + e[Utan -V+Qx+ (ik)Q]}

We also have

P 1  = pll + 6P12 = pm + C0 P 2  = P 2 1 
+ Fp 2 2 

=p o + Cp0 YM0 P

P, = pll + "1 2  =PO + E ' 0 P2 =P21 
+ p 2 2  p0o + e 0OMo R
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These values will be substituted in equations (A.1-A.3).

Equations (A.1.l-A.3.1) are considered first. From Equation

(A.3.1) we get after multiplying it by 
Cos

P0[sin 2 a + - = -~lsin2a (A .1)Y-i P(, Y

YP 1 PO
Setting = =- and solving for - we get

PMUCC MCDP

P (Y+l)M2sin 2-- = (A. 3. I.AI)
(y-l) sin2aMl + 2

From equation (A.2.1) we get after dividing it by p. and
PO

solving for -
PCO

Po O y+l o Y+1

Substituting for po/pm its value from (A.3.1.Al), we get

Po 2ysin 28M - (y-l)
0 CO (A.2.1.Al)

p. Y+l

From equation (A.1.1) we get after multiplying it by cos $

p U sin 8 = 0u0sin $ (A 1.2)

From equation (A.4) we get the following two equations equating

the zeroth and first order terms in e and using the relation

cos 6 cos $ - sin 9 sin $ = cos 8

U cos 8 = u0 cos $ (A.4.1)
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-U ,sin 6Qx  = u0 (U +tan oV) (A.4.2)

From equations (Al.l.0) and (A4.1) we have

P = tan B (A.l.l.Al)
p tan

Equations (A.1.l.Al), (A.2.l.Al) and (A.3.1.Al) consti-

tute the supersonic uniform wedge flow solution presented in

Section II.A.4.a.

Equations (A.l.2-A.3.2) are considered next. The time -

independent unknown functions R, P, U and V can be found in

terms of Q' and (ik)Q in the following order. From simplified

equation (A.3.2) the function R; from the known function R

and equation (A.2.2) the function P; finally from equations

(A.1.2) and (A.4.2) the functions U and V. The derivations

are lengthy and tedious and will not be included here. The ex-

pressions for the complete set of coefficients in equations

(2.11) are given in (Ref. 7] and are quoted below.

~P 4 Po 2 P

(I-W)A = (1- o)cos 4[i+-2 (M2-l)tan 0-yW(--l)] (Al.3a)

Sco 2 [ o 0
(l-w)B = (1 - )cos2 +-W-yW( - ) ] (Al.3b)

PO P. PO

(1-W) C = 2kH (1 --- o c s  1 - iz---q(La-1)] A.a

p 0 )pco2 p 0

- 2
D = C/cos (Al.4b)

E = (A-B) cot ' (Al.5a)
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F - -B tan * (Al.5b)

~P 4Po

(I-W)G = kH(1--)cos 4[y+l-(y-1)-] (Al.6a)
PO

2J = G/cos (Al.6b)

M 0 W M 2  2 0
k = H = tan , W = sin

0

To illustrate the derivation procedure suggested, we

find, below, the expression for the function R and compare the

coefficients G and J with those given by relations (Al.6a)

and (Al.6b) above.

2 2We multiply equation (A.3.2) by cos O/p U. and use relations

(A.l.4.Al), (Al.2), (A.4.1), (A.l.l.Al) and cos e = cos (a-$)

to simplify it. We finally have

R -cs3() [ Q ' + (ik)Q/cos2 oj
R M 0si~nPO Y+l

Thus the coefficients G and j found are

S 2 cos 3 (L-I-'
G = M° sin P + ) (Al.7a)

- - 2J = G/cos2 (Al.7b)

The second coefficient J is expressed by the identical rela-

tions (Al.6b) and (Al.7b). It can also be seen that the

expressions (Al.6a) and (Ai.7a), for the first coefficient

G, are identical by direct substitution and use of the
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following additional relations given in Section 
II.A.4.a,

2 + (Y-)x'2
o -(y+l) x'

where

X1 = M2sin2 ,

X = M2 sin20
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APPENDIX C

OSCILLATING FLAT PLATE IN STEADY UNIFORM FLOW--
EXPANSION SIDE

For this case, which was considered in Section III.A.2

(Figures 2.2a and 2.2b) we assume that there is no change

in the steady flow quantities across the front. Thus

v 1  u l{1,0} ' 2 = u 1U +CU,eV}

G = xtan0-y+Ce(x)

Then

VG = -{tan 0 + £Q',-I}, = {1,tan 0 + eQ'1

Z2 = l1 + eZ12 = 1 + tan 2  + e[2tanQ

X 1= X1 1 + eX1 2 = u1 {tan 0 + S[Q' + (ik)Q]1

X2 = x21 + X22  ' u1{tan + e[U tan-V +Q'+((ik)Q]}

We also have

= Pll + 'P12 = Pl + C-0

P2 = P 2 1 + 'P 2 2  ' P1 + CPlYMlP

p1  = p1l + p 1 2 = P1 + C, 0
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P2= P21 + £P22 Pl + ePlyM1R

Equation (A.3.2) is simplified using equation (A.3.1) and

becomes with P1 2 
= 0,

( - - P21) ( 2 - 1
P22 P21(l _ yt-_ Xl 11

Subsituting values given above we get

R - G'Q' + J' (ik)Q (A2.1)

with

G' = 4 cos3€J' = G'/cos 2 (A2.1.1)(y+l)M1 sin4 '

Equation (A.2.2) is simplified using equation (A.2.1)

and beomces with = P1 2 = 0

P21 (p11k + P1 2)P22 = 22 Fj- (p21k - p 17

We substitute values from above and have

P - R (A2.2)

From equations (A.1.2) and (A.4) we get the following two

relations respectively,

U tan b -V - -M tan R

U+Vtan *- 0
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Solving these relations we get

V = A'Q' + B'(ik)Q (A2.3)

with

A'-4cos 4 A 2
A' + , B' = A'/cos2  (A2.3.1)

and also

U = E'Q' + F' (ik)Q (A2.4)

with

E'= 4cos 3 sin F' = E'/os2 (A2.4.1)

Equations (A2.l-A2.4) give the boundary conditions

(2.16f-2.16i) and (2.17f-2.17i) when the power series expan-

sions of the time-independent quantities, given by relations

(2.8), are used. The apparent differences between the ex-

pressions given here for the boundary conditions and those

given in (Ref. 8], formulas (21) and (22), are due to the

different representations of the equation of the front.
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APPENDIX D

OSCILLATORY UPSTREAM FLOW PAST A STATIONARY WEDGE

For this case which was considered in Section IV.A.3

(Figure 3.4b) we obtain from relations (3.6) and (3.9) with

C = 0,

V = uoB{cos Od + 1UB' -s i n ed + 1VB}

Pl =P11 +  lP2 Po B IEPo B PB (A3. a)

P1  = Pll + p1 2  p 10 Po RB (A3.ib)B B

V2  = Uo{1 +E1 UCVl }

P 2  = P 2 1 
+ 

1 P 2 2 = P+F-1 poyMoP1  (A3.lc)

P2 = P2 1 4+ 'IP 2 2 = PO+ 1 poMoRI (A3.ld)

where UB, VB, PB and R have the following general form given

by (3.6a-3.6d)

MB= C m + ) (Cm x +Cm Y +Cm3) (A3.0)
0 1 2 3

We also have with 2= and G = x tans -y + elQ1 (X) = 0

1
VG = -an $ +F Qj,-}, - {,tan $+ c o

Z - z1 +C 1Z12- 1 +tan2 +C I 2 tan 0Q (A3.1e)
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X = u0 sin $/cos (A3.1f)

X2 CUoB[U tan -VB +cos edQj+(ikl)uoQl/uo] (A3.lg)

X2 1  = u 0 tan% (A3.lb)

X Uo[U1 tano -V 1 +Qj + (ikl)Q] (A3.1i)

Equation (A.3.2) is simplified using equation (A.3.1)

and becomes

2  12 Z 2 ] 1 12P21 "21P12 z
P22 2 1  x-- ---- z--] PlT 1 ] + Pi l "li l 2 2

p1 1X11

Using relations (A3.1) we obtain

R1 = KRUB +K R2VB +KR3RB+ KR 4PB +KR5 Qi +KR6 (ik)Q1  (A3.2a)

with

KR = H1 sin O/sin a, KR 2  = -H1 cos /sin $,

22

= /M +H1 /2, KR - 2 2
3 4 Mo [sin a(y-1)M2 +21

K = 2KR5  = Hlcos 2/tan $ , KR6  = Hl/tan B

HI 2(-I _)/M °
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Equation (A.2.2) is simplified using equation (A.2.1)

and becomes

P P21 [P I (PIP 1 P21 [PlI+(P-I)P21 ]
22~P2 12 [j~ I(P -)1P21] 2

22 PI2 [P-(-1)1P 2 1 ] p 1-1)P 2 1 ]

P21
+ P12

p1 1

We substitute values from (A3.1) and get

P = K U B-K V +K R+ + (k1)Q (A3.2b)
P1 KpUB Kp2 VB p3 RB Kp4 PB +Kp 5 Qi+ Kp 6 (ilQ

where:

K H2KR , j = 1,2,5,6

1 + (1-1)po/PoB

p 3  2KR3 M0 [1 - (11-l) p/P 0

K P4 H2K R*4i+1/(YM)
Kp4  H2R 4 + / o )

Po [(.-i)+po/Po B I
H2  yp 0[1- (1o-1)P/Po

0B B

From equations (A.1.2) and (A.4) we get a system of two equa-

tions and solving for U1 and V1 we obtain

V1  M K U +K VB+Kv RB+Kv PB+Kv Qi+KV Q1 (ik) (A3.2c)v1 B v 2  3 4 5 ± 6

where
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Kv = H3 KR. (j = 3,4)

K 1  = H3KR + H4 , K R 3 KR + H4/tan 8d

K = H3 KR + H4 cos($+O)/tan 0

K v = H3 KR6 -cos 2[P 0/P0 -1]

H = M tan€, H = sin e8d sine cos /sin cos 8

U1  = K U B+Ku 2VB+Ku 3RB+Ku Ku P +KU uI Q+u Q1 (ik) (A3.2d)

with

Ku = tanOK v (j = 3,4,6)

K = K tan 0 + /u , K = (-K tan + u /u o ) tan €U1  V1 0 B0 u2 v2 0B0

Ku5  -(K 5 tan 0 + uoB sin 8d/Uo)

The general form of the shock boundary conditions expressed

by equations (A3.2) is

Y1 = KY U B+KY2 VB+KY3 R B+KY PB+KY 5Q+KY6 Q1 (ikl) (A3.3)

Using relation (3.10) the zeroth and first order boundary

conditions across the shock become

=Y2 KYU( 4*K B "X3-+KY (0K +5K Q, (A3.4a)
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YKY UB +Ky VB +KyR +'KY PB K Qi KyQ(O1~() K1 1) 2 (1 (1 (1 6K

(A3.4b)

Introducing (A3.0) we obtain

B ) Cm and M = C x +C2Y +C
MimB m 1  m 2  3

Relation (A3.4a) then gives

(0) KY QI( ° ) + K At y = xtan (A3.5a)

x

where

K = K C +KYC + +KYC
x Yl Uo 2 0 3 0 4CPo

K y K= 5

Similarly, relation (A3.4b) gives

SKY x +Ky y +Ky+KQ +KYQ, (A3.5b)

xx yy x 0

At y = x tan

where:

K~xx  = K C + 2 v + 1 Y C + Ky C
Y x Y1 u1 2v31 4P1

Kyy= K C + K Cv2 + KyC + K4C
yy YJ 1 u2  Y2v2 3 r2 4 P2
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Ky Ky1 3  Ky 2c 3Ky C r3 Y4 P3

K K KK
yx Y5 o 6
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APPENDIX E

IN-PITCH DERIVATIVES BASED ON TN'S 2699 AND 3196

To find the stiffness and damping-in-pitch derivatives

given in [Ref. 5 1 we proceed as follows.

We define the following quantities:

S = planform area

b = half wing span

C = root chordr

C t = tip chord

LLE = leading edge angle of sweep

M = free stream Mach number

= cotangent of Mach angel = M -)5

A = aspect ratio = (2b) 2/S

X = taper ratio = Ct/Cr

= mean aerodynamic chord = 2C (X ++l)/3(X+l)
r

m = slope of LE = cot LLE

A' = parameter = A6

ml = parameter = ma

We also state the following stability derivatives defined

explicitly in [Ref. 11,121.

Resulting from steady state motion

CL = lift curve-slope derivative

CL , Cm = lift and pitching moment derivatives (due to
q q steady pitching)
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Resulting from time-dependent motion,

CL. = lift derivative

Cm. = pitching moment derivative (due to constant
CmI vertical acceleration)

To account for differences in definitions of quantities

we form the following factors

2i

F = /C, F = /2
1 r 2 F/

The stiffness and damping-in-pitch derivatives as defined

in this thesis are then given by

C = FC , C = F(C +C ) (Bl)e 1m MLM ~ 2 mq m

To find C , Cm , CM. from NACA TN's we proceed as follows:
(I q cc

i) Form a, X, A', m', cot m';

ii) Read from NACA TN 2699 (Figures 11-15) 5Cm  and find

C = (OC )/Sm m a

iii) Read from NACA TN 2699 (Figures 26-30 SCL and use
a

its value to find pivot position as follows

x/C r  = -F 1 (sC m )/(OCL )

,' Read from NACA TN 2699 (Figures 16-20 and Figures 21-25)

* tnd -C* which refer to pivot position found above.
m

i -9



v) Use following formulas to find SCL and Cq mq

CL - (SC* - 2C m )/0
q q a

C = [SC* + (C )( C )/(CL)/8
q q m q

vi) Read from NACA TN 3196 (Figures 11-15) quantities
(SCm) and (SCm.) and use them to find Cm. as
acma1 a 2 a

follows,

C. [M2 (C)m 1,/B2 + (M2/8 2 +1)(aCm.)2]/

vii) Use relations Bi to find comparison values for Cm%

and Cm6
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